Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Photochem Photobiol B ; 252: 112868, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387147

RESUMEN

Bidirectional photobiomodulation (PBM) therapy is an active research area. However, most studies have focused on its dependence on optical parameters rather than on its tissue-dependent effects. We constructed mouse models of wounds in three inflammatory states (normal, low, and high levels of inflammations) to assess the bidirectional regulatory effect of PBM on inflammation. Mice were divided into three groups to prepare common wounds, diabetic wounds, and bacteria-infected wounds. The same PBM protocol was used to regularly irradiate the wounds over a 14 d period. PBM promoted healing of all three kinds of wounds, but the inflammatory manifestations in each were significantly different. In common wounds, PBM slightly increased the aggregation of inflammatory cells and expression of IL-6 but had no effect on the inflammatory score. For wounds in a high level of inflammation caused by infection, PBM significantly increased TNF-α expression in the first 3 d of treatment but quickly eliminated inflammation after the acute phase. For the diabetic wounds in a low level of inflammation, PBM intervention significantly increased inflammation scores and prevented neutrophils from falling below baseline levels at the end of the 14 d observation period. Under fixed optical conditions, PBM has a bidirectional (pro- or anti-inflammatory) effect on inflammation, depending on the immune state of the target organism and the presence of inflammatory stimulants. Our results provide a basis for the formulation of clinical guidelines for PBM application.


Asunto(s)
Diabetes Mellitus , Terapia por Luz de Baja Intensidad , Infección de Heridas , Ratones , Animales , Modelos Animales de Enfermedad , Cicatrización de Heridas , Inflamación/radioterapia
2.
J Ethnopharmacol ; 283: 114724, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34627984

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Byur dMar Nyer lNga Ril Bu (BdNlRB) is a classic Tibetan medicine prescription for treating " white vein disease". Alzheimer's disease (AD) is a chronic degenerative disease of the central nervous system, characterized by distinct "white vein disease". In the absence of effective drugs for AD, BdNlRB may be a possible treatment for AD. AIM OF THE STUDY: To verify the therapeutic effect and possible mechanism of the proved Tibetan medicine BdNlRB on Alzheimer's disease. MATERIALS AND METHODS: 60 APP/PS1 double transgenic AD mice (Mt) and 60 Aß1-40 protein-induced AD mice (Mi) were divided into 3 groups according to the dose of BdNlRB: BdNlRB-100, BdNlRB-200 and BdNlRB-400, with 100, 200 and 400 mg/kg*weight, respectively. The mice were administrated by gavage for 8 weeks. The cognitive ability of mice was detected by Morris Water Maze, the expression of Aß protein, p-tau and microglia was detected by immunofluorescent staining, the protein expression in the hippocampus was detected by proteomics, and the abundance of fecal intestinal flora was detected by 16S RNA. RESULTS: The learning ability and memory ability of Mi mice were significantly improved after BdNlRB administration. The learning ability of Mt mice was significantly improved, while the memory ability was not improved after BdNlRB administration. After the treatment with low and medium doses of BdNlRB, the expression of p-tau decreased significantly (the rate of decrease in BdNlRB-100 and BdNlRB-200 groups was 8.05% and 12.7%, respectively), and the number of microglia increased (39.3% and 31.6%, respectively). BdNlRB significantly affected the protein expression in the hippocampus of Mt mice. 382 proteins in different expression in all three groups mainly involved in amino acid synthesis, fatty acid degradation, glutamine metabolism, synaptic vesicular cycle and oxidative phosphorylation, PPAR signaling pathway and Fc gamma-mediated phagocytosis were activated. Meanwhile, the administration of BdNlRB can regulate the intestinal flora of Mt mice, which reduces the abundance of Muribaculum and uncultured bacteroidales bacterium, and improves the abundance of Ruminococcus-1 and Ruminiclostridium-9. CONCLUSION: The oral administration of BdNlRB significantly improved the cognitive ability of AD mice, and neuroinflammation and intestinal flora regulation were the possible mechanisms.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Medicina Tradicional Tibetana/métodos , Extractos Vegetales/farmacología , Enfermedad de Alzheimer/fisiopatología , Animales , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Extractos Vegetales/administración & dosificación
3.
J Photochem Photobiol B ; 216: 112152, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33610085

RESUMEN

BACKGROUND: Emerging evidence suggests that the gut microbiota plays an important role in the pathological progression of Alzheimer's disease (AD). Photobiomodulation (PBM) therapy is believed to have a positive regulatory effect on the imbalance of certain body functions, including inflammation, immunity, wound healing, nerve repair, and pain. Previous studies have found that the intestinal flora of patients with AD is in an unbalanced state. Therefore, we have proposed the use of gut flora-targeted PBM (gf-targeted PBM) as a method to improve AD in an Aß-induced AD mouse model. METHODS: PBM was performed on the abdomen of the mice at the wavelengths of 630 nm, 730 nm, and 850 nm at 100 J/cm2 for 8 weeks. Morris water maze test, immunofluorescence and proteomic of hippocampus, and intestinal flora detection of fecal were used to evaluate the treatment effects of gf-targeted PBM on AD rats. RESULTS: PBM at all three wavelengths (especially 630 nm and 730 nm) significantly improved learning retention as measured by the Morris water maze. In addition, we found reduced amyloidosis and tau phosphorylation in the hippocampus by immunofluorescence in AD mice. By using a quantitative proteomic analysis of the hippocampus, we found that gf-targeted PBM significantly altered the expression levels of 509 proteins (the same differentially expressed proteins in all three wavelengths of PBM), which involved the pathways of hormone synthesis, phagocytosis, and metabolism. The 16 s rRNA gene sequencing of fecal contents showed that PBM significantly altered the diversity and abundance of intestinal flora. Specifically, PBM treatment reversed the typical increase of Helicobacter and uncultured Bacteroidales and the decrease of Rikenella seen in AD mice. CONCLUSIONS: Our data indicate that gf-targeted PBM regulates the diversity of intestinal flora, which may improve damage caused by AD. Gf-targeted PBM has the potential to be a noninvasive microflora regulation method for AD patients.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Terapia por Luz de Baja Intensidad , Animales , Humanos , Masculino , Ratones , Ratas , Enfermedad de Alzheimer/radioterapia , Amiloidosis/radioterapia , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de la radiación , Hipocampo/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Prueba del Laberinto Acuático de Morris/efectos de la radiación , Fosforilación/efectos de la radiación , Proteómica , Proteínas tau/metabolismo
4.
J Cell Physiol ; 236(2): 921-930, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32583437

RESUMEN

Stem cell transplantation has shown promising regenerative effects against neural injury, and photobiomodulation (PBM) can aid tissue recovery. This study aims to evaluate the therapeutic effect of human umbilical cord mesenchymal stem cells (hUCMSCs) and laser alone or combined on spinal cord injury (SCI). The animals were divided into SCI, hUCMSCs, laser treatment (LASER) and combination treatment (hUCMSCs + LASER) groups. Cell-enriched grafts of hUCMSCs (1 × 106 cells/ml) were injected at the site of antecedent trauma in SCI model rats. A 2 cm2 damaged area was irradiated with 630 nm laser at 100 mW/cm2 power for 20 min. Locomotion was evaluated using Basso-Beattie-Bresnahan (BBB) scores, and neurofilament repair were monitored by histological staining and diffusion tensor imaging (DTI). First, after SCI, the motor function of each group was restored with different degrees, the combination treatment significantly increased the BBB scores compared to either monotherapy. In addition, Nissl bodies were more numerous, and the nerve fibers were longer and thicker in the combination treatment group. Consistent with this, the in situ expression of NF-200 and glial fibrillary acidic protein in the damaged area was the highest in the combination treatment group. Finally, DTI showed that the combination therapy optimally improved neurofilament structure and arrangement. These results may show that the combination of PBM and hUCMSCs transplantation is a feasible strategy for reducing secondary damage and promoting functional recovery following SCI.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Traumatismos de la Médula Espinal/radioterapia , Traumatismos de la Médula Espinal/terapia , Animales , Diferenciación Celular/efectos de la radiación , Células Cultivadas , Imagen de Difusión Tensora/métodos , Humanos , Filamentos Intermedios/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Actividad Motora/efectos de la radiación , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de la radiación , Médula Espinal/efectos de la radiación , Cordón Umbilical/efectos de la radiación
5.
Lasers Med Sci ; 34(4): 667-675, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30232645

RESUMEN

Photobiomodulation therapy (PBMT) can enhance the mesenchymal stem cell (MSC) proliferation, differentiation, and tissue repair and can therefore be used in regenerative medicine. The objective of this study is to investigate the effects of photobiomodulation on the directional neural differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) and provide a theoretical basis for neurogenesis. hUC-MSCs were divided into control, inducer, laser, and lasers combined with inducer groups. A 635-nm laser and an 808-nm laser delivering energy densities from 0 to 10 J/cm2 were used in the study. Normal cerebrospinal fluid (CSF) and injured cerebrospinal fluid (iCSF) were used as inducers. The groups were continuously induced for 3 days. Cellular proliferation was evaluated using MTT. The marker proteins nestin (marker protein of the neural precursor cells), NeuN (marker protein of neuron), and GFAP (glial fibrillary acidic protein, marker proteins of glial cells) were detected by immunofluorescence and western blot. We found that irradiation with 635-nm laser increased cell proliferation, and that with 808 nm laser by itself and combined with cerebrospinal fluid treatment generated significant neuron-like morphological changes in the cells at 72 h. Nestin showed high positive expression at 24 h in the 808 nm group. The expression of GFAP increased in the 808-nm combined inducer group at 24 h but decreased at 72 h. The expression of neuN protein increased only at 72 h in both the 808-nm combined inducer group and inducer group. We concluded that 808 nm laser irradiation could help CSF to induce neuronal differentiation of hUC-MSCs in early stage and tend to change to neuron rather than glial cells.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de la radiación , Neuronas/citología , Neuronas/efectos de la radiación , Cordón Umbilical/citología , Antígenos Nucleares/metabolismo , Proliferación Celular/efectos de la radiación , Forma de la Célula/efectos de la radiación , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunofenotipificación , Proteínas del Tejido Nervioso/metabolismo , Nestina/metabolismo , Neurogénesis/efectos de la radiación
6.
Technol Health Care ; 26(S1): 135-143, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29710746

RESUMEN

BACKGROUND: Laser therapy is reported to be clinically effective for improving microcirculation, rheological properties and blood lipid profiles despite the lack of certainty on the mechanism. OBJECTIVE: This study intends to provide methods to drop blood lipid level of hyperlipidemia samples by low-intensity laser irradiation therapy and provide reasoning of mechanism. METHODS: Twenty whole blood samples of high level of lipids profile are irradiated by 405 nm low-intensity laser at 12 J/cm2 twice a day for 3 days and compared with normal lipids profile group. Then whole blood sample are centrifuged to obtain result of erythrocyte for further interpretation. Multi-scan spectrum microplate reader is used to measure absorption spectrum and data is analyzed by software SPSS 14.0. RESULTS: Results show that after 405 nm low-intensity laser irradiation, whole blood samples of high lipid level statistically have higher absorbance peak value than normal samples while erythrocyte samples have lower absorbance peak value. CONCLUSIONS: From the divergence of absorption peak value change after low-intensity laser irradiation for whole blood sample and erythrocyte, we suspect that low level laser irradiation affects the enzymes activity of lipid metabolism, improves the cholesterol balance of plasma and cytoplasm in erythrocyte, and decreases aggregation of the erythrocyte.


Asunto(s)
Eritrocitos/efectos de la radiación , Hiperlipidemias/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Análisis Espectral
7.
Lasers Med Sci ; 27(3): 585-91, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21948400

RESUMEN

A rabbit model of endophthalmitis was established to evaluate the antiinflammatory effect of low-level laser therapy (LLLT) as an adjunct to treatment for Staphylococcus epidermidis endophthalmitis. Rabbits were randomly divided into three groups to receive intravitreal injections into their left eye: group A received 0.5 mg vancomycin (100 µl), group B received 0.5 mg vancomycin + 0.2 mg dexamethasone (100 µl), and group C received 0.5 mg vancomycin (100 µl) and continuous wave semiconductor laser irradiation (10 mW, λ = 632 nm) focused on the pupil. Slit lamp examination and B-mode ultrasonography were conducted to evaluate the symptoms of endophthalmitis. Polymorphonuclear cells and tumour necrosis factor alpha (TNF-α) in aqueous fluid were measured at 0 h, and 1, 2, 3, 7 and 15 days. A histology test was conducted at 15 days. B-mode ultrasonography and histology revealed that groups B and C had less inflammation than group A at 15 days. Groups B and C had fewer polymorphonuclear cells and lower levels of TNF-α in aqueous fluid than group A at 2, 3 and 7 days (P < 0.05). There was no significant difference between groups B and C (P > 0.05). There was no significant difference between groups A, B and C at 15 days (P > 0.05). As an adjunct to vancomycin therapy to treat S. epidermidis endophthalmitis, LLLT has an antiinflammatory effect similar to that of dexamethasone.


Asunto(s)
Endoftalmitis/radioterapia , Terapia por Luz de Baja Intensidad , Infecciones Estafilocócicas/radioterapia , Staphylococcus epidermidis , Animales , Terapia Combinada , Dexametasona/administración & dosificación , Endoftalmitis/diagnóstico por imagen , Endoftalmitis/tratamiento farmacológico , Endoftalmitis/patología , Láseres de Semiconductores/uso terapéutico , Conejos , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología , Factor de Necrosis Tumoral alfa/metabolismo , Ultrasonografía , Vancomicina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA