Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(4): 1953-1961, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37897493

RESUMEN

BACKGROUND: A new enzymatic hydrolysis-based process inspired by the Maillard reaction can produce strong flavored, high-value rapeseed oil that meets safety requirements. In the present study, the effect of reaction time (10-30 min) and temperature (130-160 °C) on the physicochemical properties, nutritional status, fatty acids composition and key aroma compounds of fragrant rapeseed oil (FRO) was investigated. RESULTS: An increasing reaction time and temperature substantially decreased the total tocopherol, polyphenol and sterol contents of FRO, but increased benzo[a]pyrene content, as well as the acid and peroxide values, which did not exceed the European Union legislation limit. Among the volatile components, 2,5-dimethyl was the main substance contributing to the barbecue flavor of FRO. The 150 °C for 30 min reaction conditions produced a FRO with a strong, fragrant flavor, with high total tocopherol (560.15 mg kg-1 ), polyphenol (6.82 mg kg-1 ) and sterol (790.65 mg kg-1 ) contents; acceptable acid (1.60 mg g-1 ) and peroxide values (4.78 mg g-1 ); and low benzo[a]pyrene (1.39 mg g-1 ) content. These were the optimal conditions for the enzymatic Maillard reaction, according to the principal component analysis. Furthermore, hierarchical cluster analysis showed that reaction temperature had a stronger effect on FRO than reaction time. CONCLUSION: The optimal enzymatic Maillard reaction conditions for the production of FRO are heating at 150 °C for 30 min. These findings provide new foundations for better understanding the composition and flavor profile of FRO, toward guiding its industrial production. © 2023 Society of Chemical Industry.


Asunto(s)
Reacción de Maillard , Compuestos Orgánicos Volátiles , Aceite de Brassica napus/química , Ácidos Grasos , Odorantes/análisis , Estado Nutricional , Benzo(a)pireno , Compuestos Orgánicos Volátiles/química , Polifenoles/análisis , Peróxidos , Esteroles , Tocoferoles
2.
J Oleo Sci ; 72(8): 755-765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532566

RESUMEN

This study compared the effect of five different adsorbents (activated clay, activated carbon, attapulgite clay, bentonite, diatomite) on the levels of nutrients, harmful substance retention, and decolorization in rice bran oil. Among the adsorbents tested, activated carbon displayed the highest decolorization efficiency (82.90%) and adsorption effect on 3,4-benzopyrene (BaP, 89.53%) and 3-monochloropropane-1,2-diol ester (41.55%), whereas activated clay had the highest oryzanol retention percentages (85.98%) and affordability. Activated carbon and activated clay were therefore selected as composite decolorizing agents. Based on single-factor and Box-Behnken response surface tests, the optimal conditions for decolorization efficiency (97.08%), oryzanol retention (89.62%), sterol retention (90.16%), vitamin E retention (79.91%), and benzo(a)pyrene adsorption percentages (95.98%) were determined to be achieved by using a 5% (w/w) composite decolorant (activated clay:activated carbon=5:1), at a temperature of 116℃, with an incubation time of 33 min. This study provides evidence to support the efficacy of compound decolorants, which may have practical use in large-scale industrial applications of edible oil decolorization during refinement.


Asunto(s)
Carbón Orgánico , Aceite de Salvado de Arroz , Arcilla , Valor Nutritivo
3.
Br J Nutr ; : 1-11, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246564

RESUMEN

Se deficiency causes impaired growth of fish skeletal muscle due to the retarded hypertrophy of muscle fibres. However, the inner mechanisms remain unclear. According to our previous researches, we infer this phenomenon is associated with Se deficiency-induced high concentration of reactive oxygen species (ROS), which could suppress the target of rapamycin complex 1 (TORC1) pathway-mediated protein synthesis by inhibiting protein kinase B (Akt), an upstream protein of TORC1. To test this hypothesis, juvenile zebrafish (45 d post-fertilisation) were fed a basal Se-adequate diet or a basal Se-deficient diet or them supplemented with an antioxidant (DL-α-tocopherol acetate, designed as VE) or a TOR activator (MHY1485) for 30 d. Zebrafish fed Se-deficient diets exhibited a clear Se-deficient status in skeletal muscle, which was not influenced by dietary VE and MHY1485. Se deficiency significantly elevated ROS concentrations, inhibited Akt activity and TORC1 pathway, suppressed protein synthesis in skeletal muscle, and impaired hypertrophy of skeletal muscle fibres. However, these negative effects of Se deficiency were partly (except that on ROS concentration) alleviated by dietary MHY1485 and completely alleviated by dietary VE. These data strongly support our speculation that Se deficiency-induced high concentration of ROS exerts a clear inhibiting effect on TORC1 pathway-mediated protein synthesis by regulating Akt activity, thereby restricting the hypertrophy of skeletal muscle fibres in fish. Our findings provide a mechanistic explanation for Se deficiency-caused retardation of fish skeletal muscle growth, contributing to a better understanding of the nutritional necessity and regulatory mechanisms of Se in fish muscle physiology.

4.
J Nutr ; 151(7): 1791-1801, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33982120

RESUMEN

BACKGROUND: Selenium (Se) status is closely related to skeletal muscle physiological status. However, its influence on skeletal muscle growth has not been well studied. OBJECTIVES: This study aimed to analyze the impacts of overall Se status (deficient, adequate, and high) on skeletal muscle growth using a growing zebrafish model. METHODS: Zebrafish (1.5-mo-old) were fed graded levels of Se (deficient: 0.10 mg Se/kg; marginally deficient: 0.22 mg Se/kg; adequate: 0.34 mg Se/kg; high: 0.44, 0.57, and 0.69 mg Se/kg) as Se-enriched yeast for 30 d. Zebrafish growth, and Se accumulation, selenoenzyme activity, selenotranscriptome profiles, and oxidative status in the whole body, and selenotranscriptome profiles, histological characteristics, biochemicals, and gene and protein expression profiles related to muscle growth in the skeletal muscle were analyzed by model fitting and/or 1-factor ANOVA. RESULTS: Se status biomarkers within the whole body and skeletal muscle indicated that 0.34 mg Se/kg was adequate for growing zebrafish. For biomarkers related to skeletal muscle growth, compared with 0.34 mg Se/kg, 0.10 mg Se/kg decreased the white muscle cross-sectional area (WMCSA) and the mean diameter of white muscle fibers (MDWMF) by 14.4%-15.1%, inhibited protein kinase B-target of rapamycin complex 1 signaling by 63.7%-68.5%, and stimulated the autophagy-lysosome pathway by 1.07 times and the ubiquitin-proteasome pathway (UPP) by 96.0% (P < 0.05), whereas 0.22 mg Se/kg only decreased the WMCSA by 7.8% (P < 0.05); furthermore, 0.44 mg Se/kg had no clear effects on skeletal muscle biomarkers, whereas 0.57-0.69 mg Se/kg decreased the WMCSA and MDWMF by 6.3%-25.9% and 5.1%-21.3%, respectively, and stimulated the UPP by 2.23 times (P < 0.05). CONCLUSIONS: A level of 0.34 mg Se/kg is adequate for the growth of zebrafish skeletal muscle, whereas ≤0.10 and ≥0.57 mg Se/kg are too low or too high, respectively, for maintaining efficient protein accretion and normal hypertrophic growth.


Asunto(s)
Selenio , Animales , Antioxidantes/metabolismo , Músculo Esquelético/metabolismo , Proteolisis , Selenio/metabolismo , Pez Cebra/metabolismo
5.
Biol Trace Elem Res ; 199(5): 2000-2011, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32666430

RESUMEN

As a nutritionally essential trace element, selenium (Se) is crucial for fish growth. However, the underlying mechanisms remain unclear. Fish somatic growth relies on the white muscle growth. This study aimed to explore the effects and underlying mechanisms of Se on fish white muscle growth using a juvenile rainbow trout (Oncorhynchus mykiss) model. Fish were fed a basal diet unsupplemented or supplemented with selenium yeast at nutritional dietary Se levels (2 and 4 mg/kg Se, respectively) for 30 days. Results showed that dietary Se supplementation significantly enhanced trout somatic growth. Histological and molecular analysis of trout white muscle tissues at the vent level showed that dietary Se supplementation elevated the total cross-sectional area of white muscle, mean diameter of white muscle fibers, protein content, nuclei number, and DNA content of individual muscle fiber, and suppressed the activities of calpain system and ubiquitin-proteasome pathway. Overall, this study demonstrated that dietary Se within the nutritional range inhibits calpain- and ubiquitin-mediated protein degradation and promotes the fusion of myoblasts into the existed muscle fibers to promote the hypertrophic growth of white muscle, thereby accelerating the somatic growth of rainbow trout. Our results provide a mechanistic insight into the regulatory role of Se in fish growth.


Asunto(s)
Oncorhynchus mykiss , Selenio , Animales , Dieta , Suplementos Dietéticos , Músculos , Selenio/farmacología
6.
Br J Nutr ; 125(7): 721-731, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32778191

RESUMEN

Se, an essential biological trace element, is required for fish growth. However, the underlying mechanisms remain unclear. Protein deposition in muscle is an important determinant for fish growth. This study was conducted on juvenile rainbow trout (Oncorhynchus mykiss) to explore the nutritional effects of Se on protein deposition in fish muscle by analysing the postprandial dynamics of both protein synthesis and protein degradation. Trout were fed a basal diet supplemented with or without 4 mg/kg Se (as Se yeast), which has been previously demonstrated as the optimal supplemental level for rainbow trout growth. After 6 weeks of feeding, dietary Se supplementation exerted no influence on fish feed intake, whereas it increased fish growth rate, feed efficiency, protein retention rate and muscle protein content. Results of postprandial dynamics (within 24 h after feeding) of protein synthesis and degradation in trout muscle showed that dietary Se supplementation led to a persistently hyperactivated target of rapamycin complex 1 pathway and the suppressive expression of numerous genes related to the ubiquitin-proteasome system and the autophagy-lysosome system after the feeding. However, the ubiquitinated proteins and microtubule-associated light chain 3B (LC3)-II:LC3-I ratio, biomarkers for ubiquitination and autophagy activities, respectively, exhibited no significant differences among the fish fed different experimental diets throughout the whole postprandial period. Overall, this study demonstrated a promoting effect of nutritional level of dietary Se on protein deposition in fish muscle by accelerating postprandial protein synthesis. These results provide important insights about the regulatory role of dietary Se in fish growth.

7.
Int J Biol Macromol ; 72: 575-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25236607

RESUMEN

The present study evaluated the anti-diabetic effects of the polysaccharides obtained from Talinum triangulare (TTP). Two TTP doses (150 mg/kg and 300 mg/kg · bw/d) were administered orally to normal and streptozotocin (STZ)-induced type 2 diabetic male Kunming mice, respectively. The TTP hypoglycemic and hypolipidemic effects were evaluated by testing the fast blood glucose (FBG) level, fasting serum insulin (FINS), and serum lipids (TC, TG, HDL, LDL) as well as the body, hepar and kidney weights. After four weeks administration, the low-dose group 150 mg/kg · bw/d) and high-dose group (300 mg/kg · bw/d) showed a marked FBG fall rate of 29.85% and 41.18% (FBG fall rate% = ((Diabetic control--TTP group)/Diabetic control) × 100%). The results of FBG and serum lipids indicate that TTP possess significant hypoglycemic effect, but no significant hypolipidemic effect. These results suggest the potential use of TTP as a functional food for the treatment of type 2 diabetic mellitus (T2DM).


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Polisacáridos/administración & dosificación , Animales , Glucemia , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Humanos , Insulina/sangre , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos NOD , Extractos Vegetales/química , Polisacáridos/química
8.
Food Funct ; 5(9): 2183-93, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25044149

RESUMEN

The aim of this paper was to study the antitumor and immunoregulatory activities of a polysaccharide (TTP) from Talinum triangulare. The molecular weight of TTP-IV was 49.9 kDa. The monosaccharide composition analysis of TTP-IV revealed that it was a heteropolysaccharide consisting of rhamnose, arabinose, mannose and galactose with a molar ratio of 1.22 : 1.00 : 1.05 : 1.51. The results of the in vivo study showed that TTP (200 mg per kg bw) significantly inhibited the growth of tumor by 49.07% in H22-bearing Kunming mice. In vitro, the growth of primary murine macrophages was promoted by TTP in a dose- and time-dependent manner significantly. Besides, RAW 264.7 cells were activated by TTP to produce NO and the toxicity of RAW 264.7 supernatant was markedly enhanced in vitro. The levels of iNOS, TLR2, TLR4 and IL-1ß were obviously increased by TTP. Therefore, it is suggested that TTP can be utilized as a potent antitumor and immunoenhancing material in functional food.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Magnoliopsida/química , Extractos Vegetales/administración & dosificación , Polisacáridos/administración & dosificación , Animales , Antineoplásicos Fitogénicos/análisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/fisiopatología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/análisis , Polisacáridos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA