Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 68(7): e2300616, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430210

RESUMEN

SCOPE: Endocannabinoid signaling regulates energy homeostasis, and is tightly associated with nonalcoholic fatty liver disease (NAFLD). The study previously finds that supplementation of docosahexaenoic acid (DHA) has superior function to ameliorate NAFLD compared with eicosapentaenoic acid (EPA), however, the underlying mechanism remains elusive. The present study aims to investigate whether DHA intervention alleviates NAFLD via endocannabinoid system. METHODS AND RESULTS: In a case-control study, the serum endocannabinoid ligands in 60 NAFLD and 60 healthy subjects are measured. Meanwhile, NAFLD model is established in mice fed a high-fat and -cholesterol diet (HFD) for 9 weeks. DHA or EPA is administrated for additional 9 weeks. Serum primary endocannabinoid ligands, namely anandamide (AEA) and 2-arachidoniylglycerol (2-AG), are significantly higher in individuals with NAFLD compared with healthy controls. NAFLD model shows that serum 2-AG concentrations and adipocyte cannabinoid receptor 1 expression levels are significantly lower in DHA group compared with HFD group. Lipidomic and targeted ceramide analyses further confirm that endocannabinoid signaling inhibition has exerted deletion of hepatic C16:0-ceramide contents, resulting in down-regulation of de novo fatty acid synthesis and up-regulation of fatty acid ß-oxidation related protein expression levels. CONCLUSIONS: This work elucidates that DHA has improved NAFLD by suppressing endocannabinoid system.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Endocannabinoides/metabolismo , Estudios de Casos y Controles , Hígado/metabolismo , Ácido Eicosapentaenoico/farmacología , Ceramidas/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
2.
Front Microbiol ; 15: 1288051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529182

RESUMEN

Wasps play important roles as predators and pollinators in the ecosystem. The Jingpo minority residing in Yunnan Province, China, has a traditional practice of using wine infused with mature wasps as a customary remedy for managing rheumatoid arthritis. The larva of the wasp is also a tasteful folk dish that has created a tremendous market. There is a paucity of survival knowledge, which has greatly restricted their potential applications in food and healthcare. Recent research has highlighted the importance of gut microbiota in insect growth. Nevertheless, there is still a lack of understanding regarding the composition, changes, and functions of the gut microbiota in Vespa mandarinia during development. In this research, the gut microbiota were investigated across three growth stages of Vespa mandarinia using a metagenomic technology. The result revealed that there are significant variations in the proportion of main gut microbes during the metamorphosis of Vespa mandarinia. Tenericutes were found to dominate during the larval stage, while Proteobacteria emerged as the dominant group post-pupation. Through a comprehensive analysis of the gut microbiota metagenome, this study revealed functional differences in the wasp gut microbiota at various growth stages. During the larval stage, the gut microbiota plays a central role in promoting metabolism. Following pupation, the gut microbiota exhibited diversified functions, likely due to the complex environments and diverse food sources encountered after metamorphosis. These functions included amino acid metabolism, compound degradation, and defense mechanisms. This research provides an extensive dataset on the gut microbiota during the metamorphosis of Vespa mandarinia, contributing to a deeper understanding of the influence of gut microbiota on wasp growth. Furthermore, this study uncovers a unique microbial treasure within insect guts, which is important for advancing the application of wasps in the fields of food and medicine.

3.
Sci Total Environ ; 896: 165252, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37400027

RESUMEN

Seasonal sediment internal phosphorus (P) release is known to affect annual algal blooms in eutrophic lakes. In this study, a year-long field investigation and laboratory sediment core incubation were conducted to study the relationship between sediment internal P cycling and algal growth in Lake Taihu. The results indicated that the concentrations of water total phosphorus (TP) and chlorophyll-a (Chla) correlated with seasonal temperature and were assumed to be caused by internal P release. From cold winter to warm seasons, sediment internal P (porewater P concentration and P flux) exhibits dynamic changes. Sediment porewater soluble reactive phosphorus (SRP) and its flux in the summer were approximately five times and eight times those during winter, respectively. The release of sediment mobile P in the summer decreases its concentration and can supply SRP for algal blooms. Laboratory core incubation indicated that Chla and phycocyanin concentrations in the overlying water showed similar changes to sediment porewater P and P flux when cores were incubated from low to high temperature. The results of this study indicated that warmer conditions could increase the sediment porewater P concentration and sediment P flux into the bottom waters and consequently enhance sediment P availability to algae. This study provides new insights into the relationship between internal sediment P cycling and algal blooms in Lake Taihu.


Asunto(s)
Lagos , Agua , Estaciones del Año , Fósforo/análisis , Eutrofización , China , Sedimentos Geológicos , Monitoreo del Ambiente
4.
Sci Bull (Beijing) ; 68(14): 1514-1521, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37438155

RESUMEN

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are regarded as pivotal semiconductor candidates for next-generation devices due to their atomic-scale thickness, high carrier mobility and ultrafast charge transfer. In analog to the traditional semiconductor industry, batch production of wafer-scale TMDs is the prerequisite to proceeding with their integrated circuits evolution. However, the production capacity of TMD wafers is typically constrained to a single and small piece per batch (mainly ranging from 2 to 4 inches), due to the stringent conditions required for effective mass transport of multiple precursors during growth. Here we developed a modularized growth strategy for batch production of wafer-scale TMDs, enabling the fabrication of 2-inch wafers (15 pieces per batch) up to a record-large size 12-inch wafers (3 pieces per batch). Each module, comprising a self-sufficient local precursor supply unit for robust individual TMD wafer growth, is vertically stacked with others to form an integrated array and thus a batch growth. Comprehensive characterization techniques, including optical spectroscopy, electron microscopy, and transport measurements unambiguously illustrate the high-crystallinity and the large-area uniformity of as-prepared monolayer films. Furthermore, these modularized units demonstrate versatility by enabling the conversion of as-produced wafer-scale MoS2 into various structures, such as Janus structures of MoSSe, alloy compounds of MoS2(1-x)Se2x, and in-plane heterostructures of MoS2-MoSe2. This methodology showcases high-quality and high-yield wafer output and potentially enables the seamless transition from lab-scale to industrial-scale 2D semiconductor complementary to silicon technology.

5.
Se Pu ; 41(3): 257-264, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-36861209

RESUMEN

The kidney-shaped, red-colord fruit from the plant, Schisandra chinensis (Turcz.) Baill, which belongs to the Schisandraceae family, is among the most popular remedies used in traditional Chinese medicine. The English name of the plant is "Chinese magnolia vine". It has been used in Asia since ancient times to treat a variety of ailments, including chronic cough and dyspnea, frequent urination, diarrhea, and diabetes. This is because of the wide range of bioactive constituents, such as lignans, essential oils, triterpenoids, organic acids, polysaccharides, and sterols. In some cases, these constituents affects the pharmacological efficacy of the plant. Lignans with a dibenzocyclooctadiene-type skeleton are considered to be the major constituents and main bioactive ingredients of Schisandra chinensis. However, because of the complex composition of Schisandra chinensis, the extraction yields of lignans are low. Thus, it is particularly important to study pretreatment methods used during sample preparation for the quality control of traditional Chinese medicine. Matrix solid-phase dispersion extraction (MSPD) is a comprehensive process involving destruction, extraction, fractionation, and purification. The MSPD method is simple, it requires only a small number of samples and solvents, it does not require any special experimental equipments or instruments, and it can be used to prepare liquid, viscous, semi-solid, solid samples. In this study, a method combining matrix solid-phase dispersion extraction with high performance liquid chromatography (MSPD-HPLC) was established for the simultaneous determination of five lignans (schisandrol A, schisandrol B, deoxyschizandrin, schizandrin B, and schizandrin C) in Schisandra chinensis. The target compounds were separated on a C18 column with a gradient elution of 0.1% (v/v) formic acid aqueous solution and acetonitrile as the mobile phases, and detection was performed at a wavelength of 250 nm. First, the effects of 12 adsorbents, including silica gel, acidic alumina, neutral alumina, alkaline alumina, Florisil, Diol, XAmide, Xion, and the inverse adsorbents, C18, C18-ME, C18-G1, and C18-HC, on the extraction yields of lignans were investigated. Second, effects of the mass of the adsorbent, the type of eluent, and volume of eluent on the extraction yields of lignans were investigated. Xion was chosen as an adsorbent for MSPD-HPLC analysis of lignans from Schisandra chinensis. Optimization of the extraction parameters showed that the MSPD method had a high lignan extraction yield with Schisandra chinensis powder (0.25 g) as a fixed value, Xion as the adsorbent (0.75 g), and methanol as the elution solvent (15 mL). Analytical methods were developed for five lignans from Schisandra chinensis and these methods showed good linearity (correlation coefficients (R2)≥ 0.9999) for each target analyte. The limits of detection and quantification ranged from 0.0089 to 0.0294 µg/mL and 0.0267 to 0.0882 µg/mL, respectively. Lignans were tested at low, medium, and high levels. The average recovery rates were 92.2% to 111.2%, and the relative standard deviations were 0.23% to 3.54%. Both intra-day and inter-day precisions were less than 3.6%. Compared with hot reflux extraction and ultrasonic extraction methods, MSPD has the advantages of combined extraction and purification, being less time-consuming, and requiring lower solvent volumes. Finally, the optimized method was successfully applied to analyze five lignans from Schisandra chinensis samples from 17 cultivation areas.


Asunto(s)
Lignanos , Schisandra , Cromatografía Líquida de Alta Presión , Solventes , Óxido de Aluminio
6.
Heliyon ; 9(2): e13432, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36820046

RESUMEN

Background: In China, there are few studies that have reported future estimations for cancer mortality. Therefore, this study aimed to assess cancer mortality in China and identify priorities for future cancer control strategies. Methods: Based on the Global Burden of Disease 2019 study, we extracted data on cancer-related deaths from 1990 to 2019 in Hunan Province, China. Under the current trends evaluated using a joinpoint regression model, we fitted a linear regression model for cancer mortality projections by 2025. Results: The age-standardized mortality rate of total cancer in Hunan, China, declined slowly and is projected to be 140.80 (95% confidence interval [CI]: 140.12-141.48) by 2025, with the mortality rate in men approximately twice that in women. In 2025, the top five causes of cancer-related deaths in males are projected to be lung, liver, colorectal, stomach, and esophageal cancers, with the corresponding causes in females being lung, breast, colorectal, liver, and cervical cancers. Between 2019 and 2025, male mortality rates due to liver and pancreatic cancer are expected to increase, while those due to the six leading female cancers will increase. Excess male deaths were associated with liver and esophageal cancers, while all main cancers in females will have excess mortality, except for colorectal cancer. Conclusion: A comprehensive cancer spectrum characteristic of both developing and developed countries will remain in Hunan, China. Lung cancer remains the most common cause of cancer-related deaths, and tobacco control efforts are urgently required. Additional efforts should be made to promote universal screening, improve access to cancer healthcare services, optimize medical payment models, and enhance access to valuable anticancer drugs.

7.
Huan Jing Ke Xue ; 44(2): 828-838, 2023 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-36775606

RESUMEN

Sediment dredging has a great effect on the control of lake internal loading and is one of the important methods for lake internal loading management. In this study, the dredged area of Taihu Lake was used as the main object. An estimation of the reduction in whole lake internal loading of Taihu Lake in decade years was carried out. At the same time, we evaluated the effect of sediment dredging on the control of internal loading in the northern area of Taihu Lake (Zhushan Bay and Meiliang Bay). The results indicated that a total of 42 million cubes of sediment was dredged from Taihu Lake, and the total nitrogen, total phosphorus, and organic matter in the dredged sediment was estimated to be approximately 6.26×104 tons, 1.83×104 tons, and 11.7×105 tons, respectively. This was roughly equal to the 20 years of external loading pollution accumulated in Taihu Lake. From a long-term perspective, sediment dredging could effectively increase the water quality of Meiliang Bay within five years and that where the external loading has been controlled effectively. However, the water quality of Meiliang Bay subsequently rebounded, but dredging still reduced the nitrogen and phosphorus content in surface sediment. On the contrary, dredging could not effectively control the internal loading of Zhushan Bay, which still had a large input of external loading. The amount of sediment internal loading recovered to the original level of the pre-dredging period. In a six-year-long period of continuous monitoring of the benthic organism community of Zhushan Bay, the results indicated that sediment dredging could cause negative effects on sediment dredging initially, but the density and biomass of the benthic organisms in the dredged area had later been recovered to the un-dredged level. There was no difference between the dredged and un-dredged areas with regard to the diversity indices of benthic organisms. The results of this study indicated that sediment dredging can effectively control the lake internal loading. However, the maintenance period of dredging effects was related closely to the input intensity of the external loading. In addition, sediment dredging did not have a large influence on the benthic organism community and could recover to the original level depending on self-recovery.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Fósforo/análisis , Nitrógeno/análisis , China
8.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36139780

RESUMEN

Accumulating evidence indicates a close relationship between oxidative stress and growth rate in fish. However, the underlying mechanisms of this relationship remain unclear. This study evaluated the combined effect of dietary antioxidants and growth hormone (GH) on the liver and the muscle redox status of Atlantic salmon. There were two sequential experimental phases (EP) termed EP1 and EP2, each lasting for 6 weeks. In EP1, Atlantic salmon were fed either low-(L, 230 mg/kg ascorbic acid (Asc), 120 mg/kg α-tocopherol (α-TOH)), or high-(H, 380 mg/kg Asc, 210 mg/kg α-TOH)vitamin diets. The vitamins were supplemented as stable forms and the feeding was continued in EP2. In EP2, half of the fish were implanted with 3 µL per g body weight of recombinant bovine GH (Posilac®, 1 mg rbGH g BW-1) suspended in sesame oil, while the other half were held in different tanks and sham-implanted with similar volumes of the sesame oil vehicle. Here, we show that increasing high levels of vitamin C and E (diet H) increased their content in muscle and liver during EP1. GH implantation decreased vitamin C and E levels in both liver and muscle but increased malondialdehyde (MDA) levels only in the liver. GH also affected many genes and pathways of antioxidant enzymes and the redox balance. Among the most consistent were the upregulation of genes coding for the NADPH oxidase family (NOXs) and downregulation of the oxidative stress response transcription factor, nuclear factor-erythroid 2-related factor 2 (nrf2), and its downstream target genes in the liver. We verified that GH increases the growth rate until the end of the trail and induces an oxidative effect in the liver and muscle of Atlantic salmon. Dietary antioxidants do lower oxidative stress but have no effect on the growth rate. The present study is intended as a starting point to understand the potential interactions between growth and redox signaling in fish.

9.
Water Res ; 225: 119125, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152444

RESUMEN

Lake Taihu suffers from severe algal blooms every year, which is attributed primarily to the release of sediment phosphorus (P), namely the internal P loading. However, the overall internal P loading and the P hotspots in sediment have not been fully studied. This paper presents several methods, including sequential P extraction, the use of diffusive gradient in thin film (DGT), and intact core incubation to give a detailed investigation of sediment internal P loading as well as its roles in algal dominated zones (ADZs) and grass dominated zones (GDZs) in Lake Taihu. Sediment microbial composition was also analyzed to investigate its relationship with P fractions. The results indicate that the total P and the mobile P fraction in the ADZ sediments are generally higher than those of the GDZ sediments. The percentage of sediment mobile P to TP is similar to the mobile P in their distributions. In contrast, calcium bound P accounts for most of the TP in GDZ, while mobile P contributes the most to TP in ADZ. Overall, sediment can release 256 tons of TP and 217 tons of soluble reactive phosphorus (SRP) over a period of six months in the warmer seasons. Similarly, a high concentration of DGT-measured P was observed in ADZs that are recognized as P hotspots in Lake Taihu. Sediments in ADZ and GDZ was dominated by the bacteria Firmicutes and Proteobacteria, respectively and which were closely related with mobile P and calcium bound P in sediment, respectively. GZD seems to be able to retain more P in sediments, thereby reducing its contribution to of internal P loading. These results indicate that the difference in sediment composition between ADZ and GDZ affects their roles in sediment internal P loading, therefore, different management strategies should be used to combat sediment internal P loads in the two zones.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Fósforo/análisis , Sedimentos Geológicos , Calcio , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Plantas , China , Eutrofización
10.
Huan Jing Ke Xue ; 43(7): 3672-3681, 2022 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-35791550

RESUMEN

In order to study the comprehensive effects of different types of dehydrating agents on the dewatering and solidification of dredged sediments, this study took the dredged sediments of Taihu Lake as the research object and selected microorganisms, polymeric iron aluminum salts, organic polymers, organic-inorganic composites, and aluminum salt microorganisms. These five types of composite dehydrating agents were used to conduct a three-month solidification test on the dredged sediment by means of geotechnical pipe bag solidification. The results of the study showed that the dehydration efficiency of organic polymers and organic-inorganic composite chemicals was better. After one month, the water content of sediment dropped to 61.78% and 63.26%, respectively, which then dropped to 40.56% and 32.16% after three months. Compared with that of the unsolidified sludge, the total nitrogen of the bottom sludge after solidification by the organic-inorganic composite agent was reduced by 74.82%, reaching 591 mg·kg-1, primarily due to the reduction in ammonia nitrogen. The solid sludge contained mainly aluminum-bound phosphorus, calcium-bound phosphorus, and iron-bound phosphorus. Among them, four groups (organic-inorganic composite) had the largest reduction in active phosphorus, with the lowest being 64.3 mg·kg-1. In addition, organic polymer agents had the best curing effect on heavy metals, the comprehensive ecological risk index of heavy metals was reduced by 51.3%, and the leaching toxicity concentration was far below the standard threshold. This study showed that organic polymers and organic-inorganic composite medicaments have a better effect on the dehydration and solidification of bottom sludge and thus have good application prospects.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Aluminio , Deshidratación , Monitoreo del Ambiente , Sedimentos Geológicos/química , Humanos , Hierro , Metales Pesados/análisis , Nitrógeno/análisis , Compuestos Orgánicos , Fósforo/análisis , Polímeros , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis
11.
J Mater Chem B ; 10(37): 7622-7627, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35797723

RESUMEN

Photovoltaic molecules possess strong absorption in the near-infrared (NIR) region and are suitable for NIR laser-triggered phototherapy. Herein, the star molecule IEICO of organic photovoltaic materials, which has a narrow bandgap and large A-D-A conjugated structure, was prepared into water dispersive nanoparticles (NPs) through a simple self-assembly method. The obtained IEICO NPs showed a strong NIR absorption peak at 800 nm and a high 1O2 quantum yield of 11% and photothermal conversion efficiency of 85.4% under 808 nm laser irradiation. The ultra-high light energy utilization efficacy (∼96.4%) of the IEICO NPs enables their excellent phototherapeutic effect on tumors. The present work suggested the huge application potential of organic photovoltaic materials in the biomedical field.


Asunto(s)
Nanopartículas , Terapia Fototérmica , Rayos Láser , Nanopartículas/química , Fototerapia , Agua
12.
Water Res ; 222: 118837, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35870388

RESUMEN

Cyanobacterial blooms appear more strongly, constantly and globally, yet the positive effect of surface solar ultraviolet radiation (UV) on cyanobacterial bloom in natural freshwater habitats is largely ignored. Here in-situ and laboratory studies were jointly designed to probe the mechanism of cyanobacterial bloom promoted by solar UV light. The results showed that solar UV light is a key trigger factor for the accumulation of total phosphorus, dissolved inorganic phosphorus and polyphosphate (polyP) in blooming cyanobacterial cells. The increase of UV dose induces polyP accumulation to result in the excessive phosphorus uptake of blooming cyanobacteria, which provides sufficient phosphorus for cyanobacterial growth in suitable environment. Solar UV light also can promote the contents of phycocyanin, allophycocyanin, and phycoerythrin, producing sufficient ATP by photosynthesis for polyP synthesis in cyanobacterial cells in lake enviroment. The frequent variations of UV irradiance exposure prompts cyanobacteria to absorb excessive phosphorus from suspended solid or sediment. Cyanobacterial intracellular phosphorus is accumulated for their growth. UV light promotes polyP accumulation in blooming cyanobacterial cells to avoid damage. The adsorption amount of phosphorus increases for exuberant growth and then more surface blooming cyanobacteria are exposed to UV light to absorb ample phosphorus. Thus, the positive feedback occurs in lake water bodies with abundant phosphorus. This amplified cycle of cyanobacterial density and phosphorus due to solar UV light in eutrophic water bodies is analogous to a triode to amplify visible photosynthesis by UV light as a base electric current in the energy flow process in lake environment, therefore, "Cyanobacterial Phosphorus Assimilation Ultraviolet Effect" is used to describe this phenomenon. A new explanation is provided for the continuing proliferating mechanism of cyanobacterial bloom. Besides, a new perspective appears on the outbreak of cyanobacterial blooms in natural eutrophic lake water bodies worldwide.


Asunto(s)
Cianobacterias , Rayos Ultravioleta , China , Eutrofización , Lagos/microbiología , Fósforo/análisis , Polifosfatos , Agua
13.
Adv Mater ; 34(26): e2201114, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35448914

RESUMEN

Controlling the architectures and crystal phases of metal@semiconductor heterostructures is very important for modulating their physicochemical properties and enhancing their application performances. Here, a facile one-pot wet-chemical method to synthesize three types of amorphous SnO2 -encapsulated crystalline Cu heterostructures, i.e., hemicapsule, yolk-shell, and core-shell nanostructures, in which unconventional crystal phases (e.g., 2H, 4H, and 6H) and defects (e.g., stacking faults and twin boundaries) are observed in the crystalline Cu cores, is reported. The hemicapsule Cu@SnO2 heterostructures, with voids that not only expose the Cu core with unconventional phases but also retain the interface between Cu and SnO2 , show an excellent electrocatalytic CO2 reduction reaction (CO2 RR) selectivity toward the production of CO and formate with high Faradaic efficiency (FE) above 90% in a wide potential window from -1.05 to -1.55 V (vs reversible hydrogen electrode (RHE)), and the highest FE of CO2 RR (95.3%) is obtained at -1.45 V (vs RHE). This work opens up a new way for the synthesis of new heterostructured nanomaterials with promising catalytic application.

14.
J Sci Food Agric ; 102(7): 2750-2760, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34719036

RESUMEN

BACKGROUND: The phenol oxidative pathway during fermentation remains unclear. To elucidate the effect of fermentation on phenol conversion, we investigated the effects of fermentation temperature and duration on the conversion of catechins and the formation of theasinensins (TSs), theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). RESULTS: During fermentation, TSs formation increased initially and then decreased. Long fermentation durations were unfavorable for liquor brightness (LB) and resulted in the production of large amounts of TRs and TBs. Low fermentation temperatures (20 °C and 25 °C) favored the maintenance of polyphenol oxidase activity and the continuous formation of TFs, TSs, and TRSI (a TRs fraction), resulting in better LB and liquor color. Higher temperatures (30 °C, 35 °C, and 40 °C) resulted in higher peroxidase activity, higher oxidative depletion rates of catechins, and excessive production of TRSII (a TRs fraction) and TBs. Analysis of the conversion pathway of polyphenolic compounds during fermentation showed that, during early fermentation, large amounts of catechins were oxidized and converted to TFs and theasinensin B. As fermentation progressed, considerable amounts of theaflavin-3'-gallate, theasinensin A, theaflavin-3-gallate, theaflavin-3,3'-digallate, and theasinensin C were produced and then converted to TRSI; in the final stage, TRSII and TBs were converted continuously. CONCLUSION: Different fermentation temperature and duration combinations directly affected the type and composition of phenolic compounds. The key conditions for controlling phenolic compound conversion and fermentation direction were 60 or 90 min and 25 or 30 °C. Our study provides insights into the regulation of phenolic compound conversion during black tea fermentation. © 2021 Society of Chemical Industry.


Asunto(s)
Biflavonoides , Camellia sinensis , Catequina , Antioxidantes/análisis , Biflavonoides/análisis , Camellia sinensis/química , Catequina/análisis , Fermentación , Fenol/análisis , Té/química , Temperatura
15.
Food Chem ; 368: 130855, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34496334

RESUMEN

Contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatography. Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry was developed for untargeted metabolomics analysis. Antioxidant activities were measured by 4 various assays. Those teas could be completely divided into green and white tea through principal component analysis, hierarchical cluster analysis and orthonormal partial least squares-discriminant analysis (R2Y = 0.996 and Q2 = 0.982, respectively). The prolonged withering generated 472 differentiated metabolites between white and green tea, prompted significant decreases (variable importance in the projection > 1.0, p-value < 0.05 and fold change > 1.50) of most catechins and 8 phenolic acids to form 4 theaflavins, and benefited for the accumulation of 17 flavonoids and flavonoid glycosides, 8 flavanone and their derivatives, 20 free amino acids, 12 sugars and 1 purine alkaloid. Additionally, kaempferol and taxifolin contributed to 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of white tea.


Asunto(s)
Antioxidantes , , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Metabolómica , Espectrometría de Masas en Tándem
16.
Artículo en Chino | WPRIM | ID: wpr-940432

RESUMEN

ObjectiveTo explore the mechanism of Dendrobium huoshanense in the treatment of gastric ulcer (GU) based on network pharmacology and in vivo experiment. MethodThe active components of D. huoshanense were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, and the targets of the components were screened from TCMSP and SwissTargetPrediction. GU-related genes were retrieved from GeneCards, Online Mendelian Inheritance in Man (OMIM), and DisGeNET. Thereby, the common targets of the disease and the medicinal were yielded and the protein-protein interaction (PPI) network was constructed, followed by Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. According to the predicted results, hematoxylin-eosin (HE) staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), Western blot, and real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) were used to validate the effects of D. huoshanense on acetic acid-induced GU in rats. ResultA total of 63 active components of D. huoshanense and 37 target genes of D. huoshanense for the treatment of GU were screened out. PPI network analysis yielded several possible core anti-GU targets of D. huoshanense. They influenced the development of GU by acting on signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), hypoxia inducible factor-1 (HIF-1), tumor necrosis factor (TNF), and nuclear factor-κB (NF-κB), and various biological processes. The in vivo experiment showed that D. huoshanense significantly reduced the levels of inflammatory factors such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and TNF-α in the serum of model rats (P<0.05, P<0.01), increased gastric blood flow (GBF) at the ulcer margin, raised the expression of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) at the ulcer margin (P<0.01), significantly down-regulated protein and mRNA expression of PI3K and Akt, and up-regulated protein and mRNA expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in the gastric tissues of GU rats (P<0.01). ConclusionThrough regulating EGFR/PI3K/Akt signaling pathway, D. huoshanense can inhibit tissue inflammation, increase gastric microcirculatory blood flow at the ulcer margin, and promote cell proliferation and repair of damaged gastric mucosa.

17.
Artículo en Chino | WPRIM | ID: wpr-927920

RESUMEN

The present study investigated the effect of extract of Poria cocos polysaccharides(PCP) on cytochrome P450 2 E1(CYP2 E1) and nuclear factor κB(NF-κB) inflammatory signaling pathways in alcoholic liver disease(ALD) mice and explored its protective effect and mechanism. Sixty male C57 BL/6 N mice of SPF grade were randomly divided into a control group, a model group, a positive drug group(bifendate, 200 mg·kg~(-1)), and high-(200 mg·kg~(-1)) and low-dose(50 mg·kg~(-1)) PCP groups. Gao-binge mo-del was induced and the mice in each group were treated correspondingly. Liver morphological and pathological changes were observed and organ index was calculated. Serum levels of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were detected. Malondialdehyde(MDA) and superoxide dismutase(SOD) in liver tissues were detected by assay kits. The levels of interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α) were detected by ELISA. The activation of macrophages was observed by immunofluorescence staining and protein expression of CYP2 E1, Toll-like receptor 4(TLR4), NF-κB p65, and phosphorylated NF-κB p65(p-NF-κB p65) were analyzed by Western blot. The ALD model was properly induced. Compared with the model group, the PCP groups significantly improved the pathological injury of liver tissues. Immunofluorescence staining revealed that compared with the model group, the groups with drug intervention showed decreased macrophages in liver tissues. Additionally, the PCP groups showed reduced ALT, AST, MDA, IL-6, and TNF-α(P<0.05), and potentiated activity of SOD(P<0.01). PCP extract has the protective effect against alcoholic liver injury in mice, and the underlying mechanism may be related to the regulation of the expression of CYP2 E1 and inhibition of TLR4/NF-κB inflammatory signaling pathway to reduce oxidative stress and inflammatory injury, thereby inhibiting the development of ALD.


Asunto(s)
Animales , Masculino , Ratones , Citocromo P-450 CYP2E1/farmacología , Hígado , Hepatopatías Alcohólicas/patología , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Wolfiporia
18.
Front Immunol ; 12: 712936, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489962

RESUMEN

The engineered "obligate" anaerobic Salmonella typhimurium strain YB1 shows a prominent ability to repress tumor growth and metastasis, which has great potential as a novel cancer immunotherapy. However, the antitumor mechanism of YB1 remains unelucidated. To resolve the proteome dynamics induced by the engineered bacteria, we applied tumor temporal proteome profiling on murine bladder tumors after intravenous injection of either YB1 or PBS as a negative control. Our data suggests that during the two weeks treatment of YB1 injections, the cured tumors experienced three distinct phases of the immune response. Two days after injection, the innate immune response was activated, particularly the complement and blood coagulation pathways. In the meantime, the phagocytosis was initiated. The professional phagocytes such as macrophages and neutrophils were recruited, especially the infiltration of iNOS+ and CD68+ cells was enhanced. Seven days after injection, substantial amount of T cells was observed at the invasion margin of the tumor. As a result, the tumor shrunk significantly. Overall, the temporal proteome profiling can systematically reveal the YB1 induced immune responses in tumor, showing great promise for elucidating the mechanism of bacteria-mediated cancer immunotherapy.


Asunto(s)
Terapia Biológica/métodos , Neoplasias/etiología , Neoplasias/metabolismo , Proteoma , Proteómica , Salmonella typhimurium , Animales , Coagulación Sanguínea , Línea Celular Tumoral , Cromatografía Liquida , Proteínas del Sistema Complemento/inmunología , Biología Computacional/métodos , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Ingeniería Genética , Humanos , Activación de Linfocitos , Neoplasias/patología , Neoplasias/terapia , Fagocitosis , Proteómica/métodos , Salmonella typhimurium/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Espectrometría de Masas en Tándem , Resultado del Tratamiento
19.
Plant Physiol Biochem ; 166: 668-676, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34214777

RESUMEN

Selenium (Se) is an essential element for human health and an important nutrient for plant growth. Selenite is the main form of Se available to plants in acidic soils. Previous studies have shown that phosphate transporters (PTHs) participate in selenite uptake in plants. Research on the PHT gene family is therefore vital for production of Se-rich products. Here, 23 CsPHT genes were identified in the tea (Camellia sinensis) genome and renamed based on homology with AtPHT genes in Arabidopsis thaliana. The CsPHT genes were divided into four subfamilies: PHT1, PHT3, PHT4, and PHO, containing nine, three, six, and five genes, respectively. Phylogenetic analysis indicated that fewer duplication events occurred in tea plants than in A. thaliana, rice, apple, and poplar. Genes in the same subfamily tended to share similar gene structures, conserved motifs, and potential functions. CsPHT genes were differentially expressed in various tissues and in roots under different Se levels, suggesting key roles in selenite uptake, translocation, and homeostasis. The results illuminate the contributions of CsPHT genes to selenite supply in tea plants, and lay a foundation for follow-up studies on their potential functions in this plant species.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Selenioso ,
20.
Anim Sci J ; 92(1): e13581, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34236125

RESUMEN

We studied the effects of wolfberry and astragalus extract on the growth performance, carcass traits, and meat quality of Tibetan fragrant pigs, and we want to explain the mechanism of the difference from the level of RNA Seq. Twelve healthy 120-day-old Tibetan fragrant pigs weighing 35 ± 2 kg were divided randomly into two groups, each with six pigs. The control group was fed a basal diet, and the wolfberry and astragalus extract (WAE) group was fed a basal diet +1‰ of WAE. The experimental period was 90 days. Compared with the control group, the growth performance of the WAE group was significantly improved (p < .05), pork marble score significantly improved (p < .05), vitamin E content significantly increased (p < .05), unsaturated fatty acid content significantly increased (p < .05). A total of 256 differentially expressed genes were obtained by transcriptome sequencing, among which 114 were up-regulated and 142 were down-regulated. GO analysis showed that the differentially expressed genes were related to biological functions, such as monounsaturated fatty acid biosynthesis, fatty acid metabolism, lipoprotein decomposition, and lipase activity. Pathway analysis showed that these differentially expressed genes were mainly involved in unsaturated fatty acid biosynthesis regulation, glycerin metabolism, and lipopolysaccharide regulation in fat. WAE improved Tibetan fragrant pigs growth performance. By intervening in key genes related to fatty acid metabolism, the unsaturated fatty acid contents in pork were regulated, which improved the nutritional value of the pork.


Asunto(s)
Planta del Astrágalo , Lycium , Extractos Vegetales , Carne de Cerdo , Alimentación Animal/análisis , Animales , Composición Corporal , Dieta/veterinaria , Ácidos Grasos Insaturados , Carne/análisis , Carne Roja , Porcinos/genética , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA