Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Int ; 166: 107362, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35749991

RESUMEN

The adverse effects of plastic on adult animal and human health have been receiving increasing attention. However, its potential toxicity to fetuses has not been fully elucidated. Herein, biodistribution of polystyrene (PS) particles was determined after the maternal mice were orally given PS micro- and/or nano-particles with and without surface modifications during gestational days 1 to 17. The results showed that PS microplastics (MPs) and nanoparticles (NPs) mainly emerged in the alimentary tract, brain, uterus, and placenta in maternal mice, and only the latter infiltrated into the fetal thalamus. PS NPs and carboxyl-modified NPs induced differentially expressed genes mainly enriched in oxidative phosphorylation and GABAergic synapse. Maternal administration of PS particles during gestation led to anxiety-like behavior of the progenies and their γ-aminobutyric acid (GABA) reduction in the prefrontal cortex and amygdala at Week 8. N-Acetylcysteine (NAC), an antioxidant, alleviated PS particles-induced oxidative injury in the fetal brain and rescued the anxiety-like behavior of the progenies. Additionally, PS nanoparticles caused excessive ROS and apoptosis in neuronal cell lines, which were prevented by glutathione supplementation. These results suggested that PS particles produced a negative effect on fetuses by inducing oxidative injury and suppressing GABA synthesis in their brain. The findings contribute to estimating the risk for PS particles to human and animal health.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Embarazo , Femenino , Humanos , Animales , Ratones , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Plásticos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Distribución Tisular , Feto/metabolismo , Apoptosis , Ácido gamma-Aminobutírico/metabolismo , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad
2.
Front Immunol ; 13: 1072996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713388

RESUMEN

Introduction: The primo vascular system (PVS), an intensive network structure, has been claimed to be representative of the acupuncture meridian. Here, we explored the role of the PVS in local enteritis and its modification by acupuncture. Methods: Chronic cecitis in rabbits was induced by 2,4,6-trinitro-benzene-sulfonic acid (TNBS). The PVS on the cecum was visualized with trypan blue staining, and collected with the help of microsurgical forceps under an optical stereomicroscope. Results: The increased primo vessels (PVs) and primo nodes (PNs) of the PVS on the surface of the cecum were induced by local inflammation, which was positively correlated with the inflammatory cells in the cecal mucosa. Tandem mass tag (TMT) based proteomic analysis revealed that 110 differentiated proteins of the PVS existed between TNBS-treated and control rabbits; 65 proteins were upregulated, while 45 proteins were downregulated. These proteins were mainly enriched in inflammation- and immunity-related processes, such as inflammatory cell proliferation, antigen presentation, and cell adhesion in the proliferated PVS (data are available via ProteomeXchange with the identifiers PXD034280). Importantly, TNBS-induced cecitis, the proliferated PVS and inflammation response-related proteins (CD40, CD45, HLA-DRA1, LAMP1, JAGN1 and FGL1) in the PVS were alleviated or reversed by repetitive electroacupuncture (EA) stimulations. Conclusion: These results suggest that the proliferated PVS and its active inclusions were related to the inflammatory process, which was modified by EA. Our study provides a new avenue for further exploration of the mechanism by which EA exerts anti-inflammatory effects.


Asunto(s)
Electroacupuntura , Enteritis , Tiflitis , Animales , Conejos , Proteómica , Inflamación , Enteritis/inducido químicamente , Enteritis/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA