Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 234: 113738, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199189

RESUMEN

Tumor recurrence and wound healing represent significant burdens for tumor patients after the surgical removal of melanomas. Wound dressings with wound healing and anticancer therapeutic abilities could help to solve these issues. Thus, a hybrid hydrogel made of polyvinyl alcohol (PVA) and polyethylene imine (PEI) was prepared by cross-linking imine bond and boronic acid bond. This hydrogel was loaded with ruthenium nanorods (Ru NRs) and glucose oxidase (GOx) and named as nanocomposite hydrogel (Ru/GOx@Hydrogel), exhibiting remarkable photothermal/photodynamic/starvation antitumor therapy and wound repair abilities. Ru NRs are bifunctional phototherapeutic agents that simultaneously exhibit intrinsic photothermal and photodynamic functions. Three-dimensional composite hydrogel loaded with GOx can also consume glucose in the presence of O2 during tumor starvation therapy. Near-infrared (NIR) light-triggered hyperthermia can not only promote the consumption of glucose, but also facilitate the ablation of residual cancer cells. The antitumor effect of the Ru/GOx@Hydrogel resulted in significant improvements, compared to those observed with either phototherapy or starvation therapy alone. Additionally, the postoperative wound was substantially healed after treatment with Ru/GOx@Hydrogel and NIR irradiation. Therefore, the Ru/GOx@Hydrogel can be used as a multi-stimulus-responsive nanoplatform that could facilitate on-demand controlled drug release, and be used as a promising postoperative adjuvant in combination therapy.


Asunto(s)
Hipertermia Inducida , Nanotubos , Neoplasias , Rutenio , Humanos , Glucosa Oxidasa , Rutenio/farmacología , Polietileneimina , Alcohol Polivinílico , Hidrogeles/química , Neoplasias/terapia , Glucosa
2.
Front Chem ; 10: 841316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372266

RESUMEN

Metal-organic frameworks (MOFs) are 3D-architecture compounds of metal ions and organic molecules with sufficient and permanent porosity, showing great potential as a versatile platform to load various functional moieties to endow the hybrid materials with specific applications. Currently, a variety of photothermal nanometals have been embedded into organic ligands for integrating the unique photothermal effects with the merits of MOFs to improve their performances for cancer therapy. In this review, we have summarized a series of novel MOF-based photothermal materials for this unique therapeutic modality against tumors from three main aspects according to their chemical compositions and structures, i) metal-doped MOF, ii) organic-doped MOF, and iii) polymer-coated MOF. In addition, we have summarized the latest developments and characteristics of MOF-based photothermal agents, such as good biocompatibility, low toxicity, and responsive photothermal conversion without destroying the structure of hybrid photothermal agent. At last, we addressed the future perspectives of MOF-based photothermal agent in the field of phototherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA