Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 46(7): 2187-2205, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36946067

RESUMEN

PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is a variably present gene that benefits crown root growth and phosphorus (P) sufficiency in rice (Oryza sativa). To explore the ecophysiological importance of this gene, we performed a biogeographic survey of landraces and cultivars, confirming that functional OsPSTOL1 alleles prevail in low nutrient and drought-prone rainfed ecosystems, whereas loss-of-function and absence haplotypes predominate in control-irrigated paddy varieties of east Asia. An evolutionary history analysis of OsPSTOL1 and related genes in cereal, determined it and other genes are kinase-only domain derivatives of membrane-associated receptor like kinases. Finally, to evaluate the potential value of this kinase of unknown function in another Gramineae, wheat (Triticum aestivum) lines overexpressing OsPSTOL1 were evaluated under field and controlled low P conditions. OsPSTOL1 enhances growth, crown root number, and overall root plasticity under low P in wheat. Survey of root and shoot crown transcriptomes at two developmental stages identifies transcription factors that are differentially regulated in OsPSTOL1 wheat that are similarly controlled by the gene in rice. In wheat, OsPSTOL1 alters the timing and amplitude of regulators of root development in dry soils and hastens induction of the core P-starvation response. OsPSTOL1 and related genes may aid more sustainable cultivation of cereal crops.


Asunto(s)
Oryza , Oryza/genética , Triticum/fisiología , Fósforo , Ecosistema , Grano Comestible , Fosfatos , Raíces de Plantas
2.
Plant Sci ; 256: 208-216, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28167034

RESUMEN

The resistance to late blight is either qualitative or quantitative in nature. Quantitative resistance is durable, but challenging due to polygenic inheritance. In the present study, the diploid potato genotypes resistant and susceptible to late blight, were profiled for metabolites. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to pathogen infection revealed increased accumulation of morphinone, codeine-6-glucuronide and morphine-3-glucuronides. These BIAs are antimicrobial compounds and possibly involved in cell wall reinforcement, especially through cross-linking cell wall pectins. Quantitative reverse transcription-PCR studies revealed higher expressions of TyDC, NCS, COR-2 and StWRKY8 transcription factor genes, in resistant genotypes than in susceptible genotype, following pathogen inoculation. A luciferase transient expression assay confirmed the binding of the StWRKY8 TF to promoters of downstream genes, elucidating a direct regulatory role on BIAs biosynthetic genes. Sequence analysis of StWRKY8 in potato genotypes revealed polymorphism in the WRKY DNA binding domain in the susceptible genotype, which is important for the regulatory function of this gene. A complementation assay of StWRKY8 in Arabidopsis wrky33 mutant background was associated with decreased fungal biomass. In conclusion, StWRKY8 regulates the biosynthesis of BIAs that are both antimicrobial and reinforce cell walls to contain the pathogen to initial infection.


Asunto(s)
Bencilisoquinolinas/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Phytophthora infestans/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Genes de Plantas , Genotipo , Pectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Regiones Promotoras Genéticas , Solanum tuberosum/metabolismo , Factores de Transcripción/metabolismo
3.
J Exp Bot ; 66(22): 7377-89, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26417019

RESUMEN

Quantitative resistance is polygenically controlled and durable, but the underlying molecular and biochemical mechanisms are poorly understood. Secondary cell wall thickening is a critical process in quantitative resistance, regulated by transcriptional networks. This paper provides compelling evidence on the functionality of StWRKY1 transcription factor, in a compatible interaction of potato-Phytophthora infestans, to extend our knowledge on the regulation of the metabolic pathway genes leading to strengthening the secondary cell wall. A metabolomics approach was used to identify resistance-related metabolites belonging to the phenylpropanoid pathway and their biosynthetic genes regulated by StWRKY1. The StWRKY1 gene in resistant potato was silenced to decipher its role in the regulation of phenylpropanoid pathway genes to strengthen the secondary cell wall. Sequencing of the promoter region of StWRKY1 in susceptible genotypes revealed the absence of heat shock elements (HSEs). Simultaneous induction of both the heat shock protein (sHSP17.8) and StWRKY1 following pathogen invasion enables functioning of the latter to interact with the HSE present in the resistant StWRKY1 promoter region. EMSA and luciferase transient expression assays further revealed direct binding of StWRKY1 to promoters of hydroxycinnamic acid amide (HCAA) biosynthetic genes encoding 4-coumarate:CoA ligase and tyramine hydroxycinnamoyl transferase. Silencing of the StWRKY1 gene was associated with signs of reduced late blight resistance by significantly increasing the pathogen biomass and decreasing the abundance of HCAAs. This study provides convincing evidence on the role of StWRKY1 in the regulation of downstream genes to biosynthesize HCAAs, which are deposited to reinforce secondary cell walls.


Asunto(s)
Ácidos Cumáricos/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Pared Celular/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Choque Térmico/metabolismo , Redes y Vías Metabólicas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Phytophthora infestans , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Solanum tuberosum/genética , Solanum tuberosum/microbiología
4.
Funct Integr Genomics ; 14(2): 285-98, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24408130

RESUMEN

Late blight is a serious economic threat to potato crop, sometimes leading to complete crop loss. The resistance in potato to late blight can be qualitative or quantitative in nature. Qualitative resistance is not durable. Though quantitative resistance is durable, the breeding is challenging due to polygenic inheritance. Several quantitative trait loci (QTLs) have been identified, but the mechanisms of resistance are largely unknown. A nontargeted metabolomics approach was used to identify resistance-related (RR) metabolites in a resistant genotype (F06025), as compared to a susceptible (Shepody) genotype, mock- or pathogen-inoculated. The RR metabolites, which had high fold change in abundance, mainly belonged to phenylpropanoid, flavonoid, fatty acid, and alkaloid chemical groups. The most important phenylpropanoids identified were hydroxycinnamic acid amides, the polyaromatic domain of suberin that is known to be associated with cell wall reinforcement. These metabolites were mapped on to the potato metabolic pathways, and the candidate enzymes and their coding genes were identified. A quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay revealed a higher upregulation of 4-coumarate: CoA ligase (4-CL), tyrosine decarboxylase (TyDC), and tyramine hydroxycinnamoyl transferase (THT) in the pathogen-inoculated resistant genotype than in susceptible. These genes were sequenced in both resistant and susceptible genotypes, and nonsynonymous single-nucleotide polymorphisms (nsSNPs) were found. The application of these genes in potato resistance improvement, following validation, is discussed.


Asunto(s)
Ácidos Cumáricos/inmunología , Regulación de la Expresión Génica de las Plantas/inmunología , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Amidas , Secuencia de Aminoácidos , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/metabolismo , Genotipo , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Phytophthora infestans/patogenicidad , Phytophthora infestans/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Hojas de la Planta/enzimología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Alineación de Secuencia , Solanum tuberosum/enzimología , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología , Tirosina Descarboxilasa/genética , Tirosina Descarboxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA