Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 12654, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542185

RESUMEN

Plant essential oils are intricate blends comprising predominantly of monoterpenes and some sesquiterpenes. These oils display diverse bioactivities against targeted organisms, often arising from complex interactions among their constituents, which may demonstrate synergistic or antagonistic effects. Despite their wide use as botanical insecticides, the mechanisms behind these interactions and their effects on bioactivity are poorly understood. This study investigated the synergistic interaction of thymol and p-cymene, two major constituents of Thymus vulgaris essential oil, on the larvae and adults of the housefly, Musca domestica. The results showed that p-cymene synergized the insecticidal activity of thymol in adult houseflies, but not in larvae. GC-MS analyses and bioassays indicated the increased cuticular penetration of thymol by p-cymene was the mechanism of synergy, which was observed only in the adults. Two potential routes were proposed: the expansion of the wetting area, or the disruption of cuticular integrity through dissolving the wax layer. The sequential application and large-volume treatment bioassay results suggested that the former was the more likely mechanism. Also, the hydrophobicity of the cuticle seemed critical for this stage-specific synergy. Wax-devoid adults failed to show synergistic toxicity, whereas artificially wax-coated larvae gained a synergistic effect. Overall, the findings provide insights into the synergistic mechanism of insecticidal activity of plant essential oils and suggest potential applications in developing effective strategies using penetration-enhancing synergists.


Asunto(s)
Moscas Domésticas , Insecticidas , Aceites Volátiles , Animales , Timol/farmacología , Insecticidas/farmacología , Insecticidas/análisis , Aceites de Plantas/farmacología , Aceites Volátiles/farmacología , Larva
2.
Pestic Biochem Physiol ; 188: 105274, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464379

RESUMEN

Plant essential oils are widely acknowledged for their insecticidal activities and synergistic interaction with conventional insecticides, but their insecticidal modes of action and the mechanism of synergy remain less understood. In this study, electrophysiological screenings on the larval central nervous system (CNS) of the common fruit fly, Drosophila melanogaster, and the housefly, Musca domestica, were conducted to identify the neurophysiological effects of the oils and their major constituents. Several oils changed the firing rate of the central motor neurons, and four oils were selected to determine their major active compounds. Eugenol and thymol (87.2% and 31.1% in clove bud and thyme oils, respectively) were inhibitory to the nerve firing rates of the CNS, and exhibited synergistic toxicity to the housefly when blended with a respiratory blocking pyrrole insecticide, chlorfenapyr. On the other hand, trans-cinnamaldehyde and terpinen-4-ol (74.6% and 52.0% in cinnamon and teatree oils) seemed excitatory to the nerves, and displayed antagonistic interaction to chlorfenapyr in their insecticidal activity. Chlorfenapyr led to ATP depletion in the insects, and the inhibitory compounds accelerated the process. On the other hand, nerve-excitatory compounds seemed to nullify the depletion. This was further confirmed with the two CNS-excitatory synthetic insecticides, permethrin and chlorpyrifos, that they exhibited antagonistic toxicity when mixed with chlorfenapyr. Meanwhile, the synergy between the inhibitory compounds and chlorfenapyr was diminished when ATP was artificially injected, indicating that the bioenergetic effects of neuroinhibitors are responsible for their synergistic interactions.


Asunto(s)
Moscas Domésticas , Insecticidas , Aceites Volátiles , Animales , Aceites Volátiles/farmacología , Aceites de Plantas , Insecticidas/toxicidad , Drosophila melanogaster , Adenosina Trifosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA