RESUMEN
Nowadays, proliferation of jellyfish has become a severe matter in many coastal areas around the world. Jellyfish Nemopilema nomurai is one of the most perilous organisms and leads to significant deleterious outcomes such as harm to the fishery, damage the coastal equipment, and moreover, its envenomation can be hazardous to the victims. Till now, the components of Nemopilema nomurai venom (NnV) are unknown owing to scant transcriptomics and genomic data. In the current research, we have explored a proteomic approach to identify NnV components and their interrelation with pathological effects caused by the jellyfish sting. Altogether, 150 proteins were identified, comprising toxins and other distinct proteins that are substantial in nematocyst genesis and nematocyte growth by employing two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI/TOF/MS). The identified toxins are phospholipase A2, phospholipase D Li Sic Tox beta IDI, a serine protease, putative Kunitz-type serine protease inhibitor, disintegrin and metalloproteinase, hemolysin, leukotoxin, three finger toxin MALT0044C, allergens, venom prothrombin activator trocarin D, tripeptide Gsp 9.1, and along with other toxin proteins. These toxins are relatively well characterized in the venoms of other poisonous species to induce pathogenesis, hemolysis, inflammation, proteolysis, blood coagulation, cytolysis, hemorrhagic activity, and type 1 hypersensitivity, suggesting that these toxins in NnV can also cause similar deleterious consequences. Our proteomic works indicate that NnV protein profile represents valuable source which leads to better understanding the clinical features of the jellyfish stings. As one of the largest jellyfish in the world, Nemopilema nomurai sting is considered to be harmful to humans due to its potent toxicity. The identification and functional characterization of its venom components have been poorly described and are beyond our knowledge. Here is the first report demonstrating the methodical overview of NnV proteomics research, providing significant information to understand the mechanism of NnV envenomation. Our proteomics findings can provide a platform for novel protein discovery and development of practical ways to deal with jellyfish stings on human beings.
Asunto(s)
Venenos de Cnidarios/química , Animales , Venenos de Cnidarios/toxicidad , Fosfolipasas A2/química , Proteínas/análisis , Proteínas/química , Proteolisis , Proteómica , EscifozoosRESUMEN
Various kinds of animal venoms and their components have been widely studied for potential therapeutic applications. This study evaluated whether Nemopilema nomurai jellyfish venom (NnV) has anticancer activity. NnV strongly induced cytotoxicity of HepG2 cells through apoptotic cell death, as demonstrated by alterations of chromatic morphology, activation of procaspase-3, and an increase in the Bax/Bcl-2 ratio. Furthermore, NnV inhibited the phosphorylation of PI3K, PDK1, Akt, mTOR, p70S6K, and 4EBP1, whereas it enhanced the expression of p-PTEN. Interestingly, NnV also inactivated the negative feedback loops associated with Akt activation, as demonstrated by downregulation of Akt at Ser473 and mTOR at Ser2481. The anticancer effect of NnV was significant in a HepG2 xenograft mouse model, with no obvious toxicity. HepG2 cell death by NnV was inhibited by tetracycline, metalloprotease inhibitor, suggesting that metalloprotease component in NnV is closely related to the anticancer effects. This study demonstrates, for the first time, that NnV exerts highly selective cytotoxicity in HepG2 cells via dual inhibition of the Akt and mTOR signaling pathways, but not in normal cells.
RESUMEN
An enzyme in a nematocyst extract of the Nemopilema nomurai jellyfish, caught off the coast of the Republic of Korea, catalyzed the cleavage of chymotrypsin substrate in an amidolytic kinetic assay, and this activity was inhibited by the serine protease inhibitor, phenylmethanesulfonyl fluoride. We isolated the full-length cDNA sequence of this enzyme, which contains 850 nucleotides, with an open reading frame of 801 encoding 266 amino acids. A blast analysis of the deduced amino acid sequence showed 41% identity with human chymotrypsin-like (CTRL) and the CTRL-1 precursor. Therefore, we designated this enzyme N. nomurai CTRL-1. The primary structure of N. nomurai CTRL-1 includes a leader peptide and a highly conserved catalytic triad of His(69), Asp(117), and Ser(216). The disulfide bonds of chymotrypsin and the substrate-binding sites are highly conserved compared with the CTRLs of other species, including mammalian species. Nemopilema nomurai CTRL-1 is evolutionarily more closely related to Actinopterygii than to Scyphozoan (Aurelia aurita) or Hydrozoan (Hydra vulgaris). The N. nomurai CTRL1 was amplified from the genomic DNA with PCR using specific primers designed based on the full-length cDNA, and then sequenced. The N. nomurai CTRL1 gene contains 2434 nucleotides and four distinct exons. The 5' donor splice (GT) and 3' acceptor splice sequences (AG) are wholly conserved. This is the first report of the CTRL1 gene and cDNA structures in the jellyfish N. nomurai.
Asunto(s)
Quimasas/genética , Clonación Molecular , ADN Complementario , Escifozoos/enzimología , Escifozoos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Quimasas/antagonistas & inhibidores , Quimasas/química , Quimasas/metabolismo , Quimotripsina/metabolismo , Evolución Molecular , Cinética , Fluoruro de Fenilmetilsulfonilo/farmacología , Filogenia , Unión Proteica , Inhibidores de Serina Proteinasa/farmacología , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
A new cyclic tetrapeptide (1), along with known congeners (2, 3), was isolated from the fungus Phoma sp. derived from the giant jellyfish Nemopilema nomurai. The absolute configuration of 1 was determined using the modified Mosher's method and Marfey's method. Compound 1 displayed a weak suppressive effect on the production of nitric oxide (NO) in murine macrophage cells (RAW264.7) without notable cytotoxicity.
Asunto(s)
Ascomicetos/química , Péptidos Cíclicos/aislamiento & purificación , Escifozoos/microbiología , Animales , Línea Celular , Ratones , Modelos Moleculares , Conformación Molecular , Péptidos Cíclicos/químicaRESUMEN
Four new cytochalasin derivatives (1-4), together with cytochalasin B (5), were isolated from the fungus Phoma sp. obtained from the giant jellyfish Nemopilema nomurai. The planar structure and relative stereochemistry were established by analysis of 1D and 2D NMR data. The absolute configuration was defined by the modified Mosher's method. The compounds showed significant cytotoxicity against a small panel of human solid tumor cell lines (A549, SK-OV-3, SK-MEL-2, XF 498, and HCT15) with IC(50) values in the range of 0.5-30 µM. The cytochalasin B (5) showed obvious cytotoxicity with IC(50) of 7.9 µM against HeLa human cervical carcinoma cells.
Asunto(s)
Ascomicetos/química , Citocalasinas/farmacología , Escifozoos/microbiología , Animales , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citocalasinas/química , Relación Dosis-Respuesta a Droga , Detección Precoz del Cáncer , Humanos , Concentración 50 Inhibidora , Estructura MolecularRESUMEN
Proper treatment of jellyfish envenomed patients can be successfully achieved only from an understanding of the overall functional changes and alterations in physiological parameters under its envenomation. The majority of previous investigations on jellyfish venoms have covered only a couple of parameters at a time. Unlike most other fragmentary jellyfish studies, we employed an integrative toxicological approach, including hemodynamics, clinical chemistry and hematology analyses, using N. nomurai jellyfish venom (NnV) in dogs. After the baseline measurements for mean arterial pressure (MAP), cardiac output (CO) and heart rate (HR), NnV was intravenously administered to the dogs at doses of 0.1 or 0.3mg/kg body weight. The dogs showed significant decreases in MAP (-27.4±3.7 and -48.1±9.9 mmHg), CO (-1.1±0.1 L/min and -1.0±0.2 L/min), and HR (-4.5±0.3 and -9.9±3.1 beats/min) comparing with the respective baseline controls. The onset of systemic hypotension and bradycardia occurred within 1 min of NnV injection and they lasted for 1-35 min, depending on the NnV doses. Interestingly, serum biochemical analyses of envenomed dogs exhibited dramatic increases of alkaline phosphatase (ALP), creatine phosphokinase (CPK), alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating its possible target organs. In conclusion, we have demonstrated simultaneously, for the first time, the multiple organ toxicities (cardiotoxic, myotoxic and hepatotoxic) of a scyphozoan jellyfish venom. Based on these results, an integrative toxinological approach using dogs appears to be effective in predicting jellyfish venom toxicities and designing their therapeutic strategies. We expect this method can be applied to other jellyfish venom research as well.
Asunto(s)
Bradicardia/etiología , Venenos de Cnidarios/toxicidad , Hipotensión/etiología , Escifozoos , Animales , Presión Sanguínea/efectos de los fármacos , Gasto Cardíaco/efectos de los fármacos , Venenos de Cnidarios/administración & dosificación , Perros , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patologíaRESUMEN
The present study, for the first time, comparatively investigated the enzymatic activities (proteases and hyaluronidases) in the venoms of four Scyphozoan jellyfish species, including Nemopilema nomurai, Rhopilema esculenta, Cyanea nozakii, and Aurelia aurita. For this, various zymographic analyses were performed using assay specific substrates. Interestingly, all the four jellyfish venoms showed gelatinolytic, caseinolytic, and fibrinolytic activities, each of which contains a multitude of enzyme components with molecular weights between 17 and 130 kDa. These four jellyfish venoms demonstrated a huge variation in their proteolytic activities in quantitative and qualitative manner depending on the species. Most of these enzymatic activities were disappeared by the treatment of 1,10-phenanthroline, suggesting they might be belonged to metalloproteinases. Toxicological significance of these venom proteases was examined by comparing their proteolytic activity and the cytotoxicity in NIH 3T3 cells. The relative cytotoxic potency was C. nozakii > N. nomurai > A. aurita > R. esculenta. The cytotoxicity of jellyfish venom shows a positive correlation with its overall proteolytic activity. The metalloproteinases appear to play an important role in the induction of jellyfish venom toxicities. In conclusion, the present report proposes a novel finding of Scyphozoan jellyfish venom metalloproteinases and their potential role in the cytotoxicity.
Asunto(s)
Venenos de Cnidarios/toxicidad , Citotoxinas/toxicidad , Metaloproteasas/toxicidad , Escifozoos/patogenicidad , Animales , Venenos de Cnidarios/enzimología , Hialuronoglucosaminidasa/metabolismo , Metaloendopeptidasas/metabolismo , Ratones , Células 3T3 NIH , Escifozoos/enzimologíaRESUMEN
The recent bloom of a giant jellyfish Nemopilema nomurai has caused a danger to sea bathers and fishery damages in the waters of China, Korea, and Japan. The present study investigated the cytotoxic and hemolytic activities of crude venom extract of N. nomurai using a number of in vitro assays. The jellyfish venom showed a much higher cytotoxic activity in H9C2 heart myoblast than in C2C12 skeletal myoblast (LC(50)=2 microg/mL vs. 12 microg/mL, respectively), suggesting its possible in vivo selective toxicity on cardiac tissue. This result is consistent with our previous finding that cardiovascular function is a target of the venom. In order to determine the stability of N. nomurai venom, its cytotoxicity was examined under the various temperature and pH conditions. The activity was relatively well retained at low environmental temperature (Asunto(s)
Venenos de Cnidarios/toxicidad
, Citotoxinas/toxicidad
, Hemólisis/efectos de los fármacos
, Escifozoos
, Animales
, Gatos
, Células Cultivadas
, Venenos de Cnidarios/aislamiento & purificación
, Citotoxinas/aislamiento & purificación
, Perros
, Relación Dosis-Respuesta a Droga
, Hemólisis/fisiología
, Humanos
, Mioblastos/efectos de los fármacos
, Mioblastos/fisiología
, Conejos
, Ratas
RESUMEN
Over the past few years, populations of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) have increased dramatically in the waters of China, Korea, and Japan without any definitive reason. This has resulted in severe damage to fisheries in the areas. During a pilot study, we observed that the venom of N. nomurai produced a functional cardiac depression in mice. However, the mechanism of action was not examined. In the present study, we investigated the cardiovascular effects of nematocyst-derived venom from N. nomurai in anesthetized rats. Venom (0.1-2.4 mg protein/kg, i.v.) produced dose-dependent hypotension (65+/-12% of initial at a cumulative dose of 3 mg/kg) and bradycardia (80+/-5% of initial at a cumulative dose of 3 mg/kg). At the highest dose, this was characterized by a transient decrease in blood pressure (phase 1) followed by a return to basal level and then a slower decrease in blood pressure (phase 2). Venom also produced a decrease in rate and force of contraction in the rat isolated atria. Interestingly, venom induced a contraction of isolated aortic rings which was blocked by felodipine but not by prazosin, suggesting the contraction is mediated by calcium channel activation. These results suggest that the negative inotropic and chronotropic effects of the venom of N. nomurai may be due to a direct effect on the heart.