Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Oral Sci ; 28: e20190371, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32049135

RESUMEN

OBJECTIVE: This study aims to evaluate the influence of different air-abrasion pressures and subsequent heat treatment on the flexural strength, surface roughness, and crystallographic phases of highly translucent partially stabilized zirconia (Y-PSZ), and on the tensile bond strength of resin cement to Y-PSZ. METHODOLOGY: Fully sintered zirconia specimens were ground with SiC paper (control) and/or air-abraded with 50 µm particles of alumina at 0.1, 0.15, 0.2, or 0.3 MPa or left as-sintered. After air-abrasion at 0.2 MPa (0.2AB), additional specimens were then heated to 1500°C, and held for one hour at this temperature (0.2AB+HT1h). Flexural strength and surface roughness were evaluated. Crystalline phase identification was also carried out using X-ray diffraction. Bonded zirconia specimens with self-adhesive resin cement were stored in distilled water at 37°C for 24 h, either with or without aging (thermal cycling 4-60°C/20000). Results were analyzed statistically by ANOVA and Tukey-Kramer tests. RESULTS: The flexural strength decreased with the increase in air-abrasion pressure, while in contrast, the surface roughness increased. The lowest flexural strength and the highest roughness value were found for the 0.2AB and 0.3AB groups, respectively. All groups contained cubic-, tetragonal ( t )-, and rhombohedral ( r )-ZrO2 phases with the exception of the as-sintered group. Upon increasing the air-abrasion pressure, the relative amount of the r -ZrO2 phase increased, with a significant amount of r -ZrO2 phase being detected for the 0.2AB and 0.3AB groups. The 0.2AB+HT1h group exhibited a similar flexural strength and t -ZrO2 phase content as the as-sintered group. However, the 0.2AB group showed a significantly higher tensile bond strength (p<0.05) than the 0.2AB+HT1h group before and after aging. CONCLUSION: Micromechanical retention by alumina air-abrasion at 0.2 MPa, in combination with chemical bonding of a resin to highly translucent Y-PSZ using a MDP-containing resin cement may enable durable bonding.


Asunto(s)
Abrasión Dental por Aire/métodos , Óxido de Aluminio/química , Recubrimiento Dental Adhesivo/métodos , Cementos de Resina/química , Circonio/química , Análisis de Varianza , Resistencia Flexional , Calor , Ensayo de Materiales , Microscopía Confocal/métodos , Valores de Referencia , Reproducibilidad de los Resultados , Propiedades de Superficie , Resistencia a la Tracción , Difracción de Rayos X/métodos
2.
J. appl. oral sci ; J. appl. oral sci;28: e20190371, 2020. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-1056595

RESUMEN

Abstract Objective This study aims to evaluate the influence of different air-abrasion pressures and subsequent heat treatment on the flexural strength, surface roughness, and crystallographic phases of highly translucent partially stabilized zirconia (Y-PSZ), and on the tensile bond strength of resin cement to Y-PSZ. Methodology Fully sintered zirconia specimens were ground with SiC paper (control) and/or air-abraded with 50 µm particles of alumina at 0.1, 0.15, 0.2, or 0.3 MPa or left as-sintered. After air-abrasion at 0.2 MPa (0.2AB), additional specimens were then heated to 1500°C, and held for one hour at this temperature (0.2AB+HT1h). Flexural strength and surface roughness were evaluated. Crystalline phase identification was also carried out using X-ray diffraction. Bonded zirconia specimens with self-adhesive resin cement were stored in distilled water at 37°C for 24 h, either with or without aging (thermal cycling 4-60°C/20000). Results were analyzed statistically by ANOVA and Tukey-Kramer tests. Results The flexural strength decreased with the increase in air-abrasion pressure, while in contrast, the surface roughness increased. The lowest flexural strength and the highest roughness value were found for the 0.2AB and 0.3AB groups, respectively. All groups contained cubic-, tetragonal ( t )-, and rhombohedral ( r )-ZrO2 phases with the exception of the as-sintered group. Upon increasing the air-abrasion pressure, the relative amount of the r -ZrO2 phase increased, with a significant amount of r -ZrO2 phase being detected for the 0.2AB and 0.3AB groups. The 0.2AB+HT1h group exhibited a similar flexural strength and t -ZrO2 phase content as the as-sintered group. However, the 0.2AB group showed a significantly higher tensile bond strength (p<0.05) than the 0.2AB+HT1h group before and after aging. Conclusion Micromechanical retention by alumina air-abrasion at 0.2 MPa, in combination with chemical bonding of a resin to highly translucent Y-PSZ using a MDP-containing resin cement may enable durable bonding.


Asunto(s)
Circonio/química , Recubrimiento Dental Adhesivo/métodos , Cementos de Resina/química , Abrasión Dental por Aire/métodos , Óxido de Aluminio/química , Valores de Referencia , Propiedades de Superficie , Resistencia a la Tracción , Difracción de Rayos X/métodos , Ensayo de Materiales , Reproducibilidad de los Resultados , Análisis de Varianza , Microscopía Confocal/métodos , Resistencia Flexional , Calor
3.
Biochim Biophys Acta Gen Subj ; 1862(7): 1592-1601, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29631057

RESUMEN

BACKGROUND: Langerin, a C-type lectin receptor (CLR) expressed in a subset of dendritic cells (DCs), binds to glycan ligands for pathogen capture and clearance. Previous studies revealed that langerin has an unusual binding affinity toward 6-sulfated galactose (Gal), a structure primarily found in keratan sulfate (KS). However, details and biological outcomes of this interaction have not been characterized. Based on a recent discovery that the disaccharide L4, a KS component that contains 6-sulfo-Gal, exhibits anti-inflammatory activity in mouse lung, we hypothesized that L4-related compounds are useful tools for characterizing the langerin-ligand interactions and their therapeutic application. METHODS: We performed binding analysis between purified long and short forms of langerin and a series of KS disaccharide components. We also chemically synthesized oligomeric derivatives of L4 to develop a new high-affinity ligand of langerin. RESULTS: We show that the binding critically requires the 6-sulfation of Gal and that the long form of langerin displays higher affinity than the short form. The synthesized trimeric (also designated as triangle or Tri) and polymeric (pendant) L4 derivatives displayed over 1000-fold higher affinity toward langerin than monomeric L4. The pendant L4, but not the L4 monomer, was found to effectively transduce langerin signaling in a model cell system. CONCLUSIONS: L4 is a specific ligand for langerin. Oligomerization of L4 unit increased the affinity toward langerin. GENERAL SIGNIFICANCE: These results suggest that oligomeric L4 derivatives will be useful for clarifying the langerin functions and for the development of new glycan-based anti-inflammatory drugs.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Superficie/metabolismo , Disacáridos/metabolismo , Sulfato de Queratano/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Antígenos CD/química , Antígenos de Superficie/química , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Células Dendríticas/metabolismo , Disacáridos/química , Disacáridos/uso terapéutico , Evaluación Preclínica de Medicamentos , Ensayo de Inmunoadsorción Enzimática , Galactosa/metabolismo , Humanos , Sulfato de Queratano/química , Lectinas Tipo C/química , Ligandos , Lectinas de Unión a Manosa/química , Unión Proteica , Isoformas de Proteínas/metabolismo , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/metabolismo , Proteínas Recombinantes/metabolismo
4.
Dent Mater J ; 32(1): 189-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23370889

RESUMEN

The aim of the present study was to evaluate the fracture load and fracture mode of thin Ceria-stabilized tetragonal zirconia polycrystals/Al(2)O(3 )nanocomposites (Ce-TZP/A) and Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) crown frameworks. Artificial maxillary second premolars were prepared for metal-ceramic crown and all-ceramic crown restorations and Co-Cr tooth analogs were duplicated. 10 standard (0.5 mm overall thickness) zirconia-ceramic crown frameworks (Y-TZPs) for all-ceramic crown preparation and 10 modified (a 0.3-mm-thick framework increased in thickness by adding a 1.0-mm-thick palatal margin with a height of 2.0 mm) zirconia-ceramic crown frameworks (Y-TZPm, Ce-TZP/Am) for metal-ceramic crown preparation were fabricated. The frameworks were cemented to the Co-Cr tooth analog and loaded vertically until fracture. The fracture load of Y-TZPs (180.0 N) and Ce-TZP/Am (183.7 N) were significantly higher than that of Y-TZPm (133.7 N). There was a significant difference in fracture mode between Y-TZPm and Ce-TZP/Am. Within the limitation of this study, Ce-TZP/Am provide sufficient strength for clinical application.


Asunto(s)
Óxido de Aluminio/química , Cerámica/química , Cerio/química , Coronas , Diseño de Prótesis Dental/métodos , Nanocompuestos/química , Itrio/química , Circonio/química , Análisis de Varianza , Cromo , Cobalto , Aleaciones Dentales/química , Análisis del Estrés Dental , Análisis de Falla de Equipo , Ensayo de Materiales
5.
J Adhes Dent ; 10(3): 189-96, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18652267

RESUMEN

PURPOSE: The bond strength and bond durability of two high-viscosity dual-curing resin luting agents with different surface treatments of ceramic were investigated. MATERIALS AND METHODS: GN-I machinable ceramic surfaces were treated with 37% phosphoric acid for 30 s (PA), 5% hydrofluoric acid for 5 s (HF-5), 10 s (HF-10), or 30 s (HF-30), or blasting with 50-microm Al2O3 for 10 s (AB). The roughness of the ceramic surface was measured. Treated ceramic surfaces were bonded with three resin bonding systems (RBS): Ceramic Primer/LinkmaxHV (CP/LMHV), Monobond S/VariolinkIIHV (MBS/VLIIHV), or MBS/Heliobond/VLIIHV (MBS/HB/VLIIHV). A microshear test was used to measure the bond strength after 24 h (TC 0) and subsequent thermocycling (TC 10,000 at 4 degrees C and 60 degrees C). ANOVA was performed for statistical analysis, with significance set at p < 0.05. RESULTS: For three RBSs, bond strength at TC O was not affected, regardless of ceramic surface treatment (p > 0.05). All combined groups of ceramic surface treatment and resin bonding system decreased after 10,000 thermal cycles, especially groups treated with alumina blasting and bonded with each of three RBSs (p < 0.05). MBS/HB/VLIIHV with each surface treatment did not improve the bond strength and durability compared with MBS/VLIIHV. CONCLUSION: CP/LMHV and MBS/VLIIHV obtained sufficient bond strength and bond durability to GN-I machinable ceramic by only cleaning with PA; the application of HB may not be necessary.


Asunto(s)
Recubrimiento Dental Adhesivo , Porcelana Dental/química , Cementos de Resina/química , Grabado Ácido Dental , Acrilatos/química , Óxido de Aluminio/química , Resinas Compuestas/química , Cementos Dentales/química , Grabado Dental , Análisis del Estrés Dental , Humanos , Ácido Fluorhídrico/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Ácidos Fosfóricos/química , Resistencia al Corte , Estrés Mecánico , Propiedades de Superficie , Temperatura , Factores de Tiempo , Viscosidad
6.
Int J Prosthodont ; 20(4): 417-8, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17695876

RESUMEN

This study evaluated the shear bond strength of a newly developed resin bonding system, including single-liquid ceramic primer and dual-cured resin luting agent, to 5 ceramic materials (feldspathic porcelain, machinable ceramic, In-Ceram Alumina, Procera AllCeram alumina, and Cercon). Ceramic specimens were cleaned with phosphoric acid, treated with primer, and bonded with a resin luting agent. Shear bond strength was determined after 24 hours of immersion in water and/or 10,000 thermocycles. There were no significant differences in bond strength before and after thermocycling for the 5 ceramic materials (P > .05). The findings indicate that the resin bonding system may offer an acceptable performance in terms of clinical success for the 5 ceramic restorations.


Asunto(s)
Cerámica/química , Recubrimiento Dental Adhesivo , Materiales Dentales/química , Porcelana Dental/química , Cementos de Resina/química , Óxido de Aluminio/química , Silicatos de Aluminio/química , Restauración Dental Permanente , Humanos , Ensayo de Materiales , Ácidos Fosfóricos/química , Compuestos de Potasio/química , Resistencia al Corte , Estrés Mecánico , Factores de Tiempo , Agua/química
7.
Dent Mater J ; 25(4): 669-74, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17338299

RESUMEN

This study evaluated the effect of alumina-blasting and three commercial adhesive primers on the shear bond strength of a dual-cured resin luting agent to zirconia ceramics. Two different-sized zirconia ceramic specimens were treated with or without alumina-blasting and then treated with one of three adhesive primers. Subsequently, specimens were cemented together with Linkmax HV (GC). Half of the specimens were stored in water at 37 degrees C for 24 hours and the other half thermocycled 10,000 times before shear bond strength testing. For groups treated with either alumina-blasting or primer, shear bond strength significantly decreased after thermal cycling. For groups treated with both alumina-blasting and one of the three primers, there were no significant differences in shear bond strength before and after thermal cycling (p<0.05). It was thus concluded that the application of each of the three adhesive primers following alumina-blasting was effective for strong bonding of resin luting agent to zirconia ceramics.


Asunto(s)
Recubrimiento Dental Adhesivo , Porcelana Dental , Cementos de Resina , Itrio , Óxido de Aluminio , Análisis de Varianza , Análisis del Estrés Dental , Ensayo de Materiales , Metacrilatos , Compuestos Organofosforados , Resistencia al Corte , Propiedades de Superficie , Ácidos Tricarboxílicos , Circonio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA