Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 48(3): 555-570, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35461391

RESUMEN

Excessive lipid deposition in farmed fish is a challenge in the aquaculture industry. To study the effect of dietary calcium pyruvate (CaP) on lipid accumulation in fish, we used a high fat diet (HFD) to establish a lipid accumulation model in juvenile golden pompano (Trachinotus ovatus) and supplemented with 0%, 0.25%, 0.50%, 0.75% and 1.0% CaP (diets D0-D4, respectively). After 8-week feeding in floating cages, dietary CaP significantly improved growth performance, which peaked in fish fed diet D3. Supplementation of CaP significantly decreased whole body lipid content in fish fed D2-D4 and hepatosomatic index and liver lipid content in fish fed D3 and D4. Serum and hepatic antioxidant indices, including glutathione, catalase and superoxide dismutase, showed generally increasing trends in fish fed diets with CaP. In addition, increasing dietary CaP increasingly reduced hepatic activities of hexokinase, phosphofructokinase and pyruvate kinase involved in glycolysis, and increased glycogen contents of the liver and muscle. Dietary CaP up-regulated the liver mRNA expression of pparα, cpt1, hsl and fabp1, but down-regulated expression of srebp-1, fas and acc. In conclusion, 0.75% CaP improved growth performance and reduced excessive lipid deposition by affecting fatty acid synthesis and lipolysis in juvenile T. ovatus fed HFD.


Asunto(s)
Dieta Alta en Grasa , Perciformes , Alimentación Animal/análisis , Animales , Calcio de la Dieta/metabolismo , Calcio de la Dieta/farmacología , Dieta , Suplementos Dietéticos , Peces , Metabolismo de los Lípidos , Lípidos/farmacología , Hígado/metabolismo , Perciformes/metabolismo , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacología
2.
Fish Shellfish Immunol ; 105: 177-185, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32634552

RESUMEN

To investigate the effects of dietary n-3 highly unsaturated fatty acids (HUFA) levels on growth, lipid metabolism and innate immunity in juvenile golden pompano Trachinotus ovatus, a marine carnivorous teleost, a total of 450 fish (average body weight: 14.84 g) were randomly distributed into 18 cages at sea, each dietary group with three cages and respectively fed six diets (D1-D6) with 2.30% (D1), 0.64% (D2), 1.00% (D3), 1.24% (D4), 1.73% (D5), or 2.10% (D6) n-3 HUFA. Here, D1 with fish oil as lipid source was set as control, while D2-D6 used a mixed vegetable oil as lipid source and supplemented with docosahexaenoic acid- (DHA) and eicosapentaenoic acid- (EPA) enriched oils to adjust the n-3 HUFA levels. After 8 weeks feeding, the daily growth coefficient (DGC), specific growth rate (SGR) and feed efficiency ratio (FER) showed no significant difference among the six dietary groups (P > 0.05). The levels of EPA and DHA in serum and liver increased with the dietary n-3 HUFA levels. The activity of total superoxide disumutase (T-SOD) in serum of fish fed D4 and D5 were significantly higher than that of the other groups, whereas the opposite was true for serum IL-1ß and IL-6 levels as well as liver malondialdehyde (MDA) content. The mRNA levels of genes related to hepatic lipid metabolism including sterol regulatory element-binding protein-1 (srebp-1), fatty acid binding protein 1 (fabp1), peroxisome proliferators-activated receptor alpha (pparα), elongase of very long-chain fatty acids 5 (elovl5) and fatty acyl desaturase 2 (fads2) were down-regulated in fish fed the diets with high n-3 HUFA levels, while those of apolipoprotein b 100 (aprob 100) and carnitine palmitoyl transferase 1 (cpt1) increased significantly as increasing n-3 HUFA levels up to 1.73% (D2-D5), but decreased in the 2.10% n-3 HUFA group (D6). In addition, the expression levels of genes related to innate immunity including interleukin-10 (il-10) and transforming growth factor ß1 (tgf-ß1) increased significantly when dietary n-3 HUFA increased from 0.64% to 1.73%, whereas the opposite was true for the expression levels of nuclear factor kappa-B (nf-κb), interleukin-1ß (il-1ß), interleukin-6 (il-6) and interleukin-8 (il-8). Overall, the results indicated that dietary n-3 HUFA at 1.24-1.73% (D4-D5) can effectively improve fatty acid profiles, lipid metabolism, antioxidant capacity and immune response of golden pompano.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Peces/inmunología , Inmunidad Innata/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Ácidos Grasos Insaturados/administración & dosificación , Peces/crecimiento & desarrollo , Peces/metabolismo , Distribución Aleatoria
3.
Fish Shellfish Immunol ; 89: 187-197, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30936050

RESUMEN

Replacement of fish oil (FO) with vegetable oils (VO) in diets is economically desirable for the sustainable development of the aquaculture industry. However, inflammation provoked by FO replacement limited its widely application in fish industry. In order to understand the mechanism of VO-induced inflammation, this study investigated the impact of different dietary vegetable oils on the intestinal health and microbiome in carnivorous marine fish golden pompano (Trachinotus ovatus). Three diets supplemented with fish oil (FO, rich in long-chain polyunsaturated fatty acids), soybean oil (SO, rich in 18:2n-6) and linseed oil (LO, rich in 18:3n-3), respectively, were fed on juvenile golden pompano for 8 weeks, and the intestinal histology, digestive enzymes activities, immunity and antioxidant indices as well as intestinal microbiome were determined. The results showed that dietary SO significantly impaired intestinal health, and decreased the number and height of intestinal folds, and muscle thickness, as well as the zonula occludens-1 (zo-1) mRNA expression in intestine. Moreover, the two dietary VO significantly decreased the amylase and lipase activities in intestine, and reduced the trypsin activity in the dietary SO group. Furthermore, the two VO diets increased intestinal acid phosphatase (ACP) activity, while intestinal lysozyme (LZM) activity and serum diamine oxidase (DAO) activity in the SO group were also significantly increased (P < 0.05). Analysis of the intestinal microbiota showed that the two VO diets significantly increased the abundance of intestinal potentially pathogenic bacteria (Mycoplasma and Vibrio) and decreased proportions of intestinal probiotics (Bacillus and Lactococcus), especially in the dietary SO group. These results indicate that complete replacement of FO with VO in diets would induce intestinal inflammation and impair intestinal function, which might be due to changes in intestinal microbiota profiles, and that dietary SO would have a more negative effect compared to dietary LO on intestinal health in T. ovatus.


Asunto(s)
Aceites de Pescado/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Aceite de Linaza/metabolismo , Perciformes/inmunología , Aceite de Soja/metabolismo , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Aceites de Pescado/administración & dosificación , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Intestinos/enzimología , Aceite de Linaza/administración & dosificación , Perciformes/microbiología , Distribución Aleatoria , Aceite de Soja/administración & dosificación
4.
Br J Nutr ; 121(4): 374-383, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30621805

RESUMEN

To compare the growth and biosynthetic ability of long-chain PUFA (LC-PUFA) of the genetically improved farmed tilapia (GIFT) (Oreochromis niloticus) in different water salinities, an 8-week feeding trial was conducted on the GIFT juveniles at 0, 12 and 24 ‰ (parts per thousand; ppt), respectively, with three isonitrogenous (32 %) and isolipidic (8 %) diets (D1-D3). Diet D1 with fish oils (rich in LC-PUFA) as lipid source was used as the control, while D2 and D3 with vegetable oil (free LC-PUFA) blends as lipid source contained different ratios of linoleic acid (LA, 18 : 2n-6) and α-linolenic acid (ALA, 18 : 3n-3) at 4·04 (D2) and 0·54 (D3), respectively. At the end of feeding trial, the growth performance of D2 and D3 groups under all salinity treatments was as good as that of D1 group, which indicates that the GIFT juveniles may convert dietary LA and ALA into LC-PUFA to meet the requirement of essential fatty acids for normal growth and physiology. When fed the same diets, GIFT at 12 ppt had a better growth performance coupled with a higher liver and muscle arachidonic acid content than those in freshwater. Furthermore, brackish water (24 ppt) significantly promoted the mRNA levels of elongase 5 of very long-chain fatty acids (elovl5) and peroxisome proliferator-activated receptor α (pparα) in liver, when compared with freshwater. These results suggest that the GIFT may display better growth performance together with a relatively higher endogenous LC-PUFA biosynthetic ability under brackish water (12 and 24 ppt), probably through improving the expression of elovl5 and pparα in liver.


Asunto(s)
Acuicultura/métodos , Dieta/métodos , Ácidos Grasos Insaturados/biosíntesis , Salinidad , Tilapia/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Animales Modificados Genéticamente , Elongasas de Ácidos Grasos/metabolismo , Aceites de Pescado/administración & dosificación , Hígado/metabolismo , PPAR alfa/metabolismo , Aceites de Plantas/administración & dosificación , Tilapia/genética
5.
Proc Natl Acad Sci U S A ; 107(39): 16840-5, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20826444

RESUMEN

Biosynthesis of the highly biologically active long-chain polyunsaturated fatty acids, arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids, in vertebrates requires the introduction of up to three double bonds catalyzed by fatty acyl desaturases (Fad). Synthesis of ARA is achieved by Δ6 desaturation of 182n - 6 to produce 183n - 6 that is elongated to 203n - 6 followed by Δ5 desaturation. Synthesis of EPA from 183n - 3 requires the same enzymes and pathway as for ARA, but DHA synthesis reportedly requires two further elongations, a second Δ6 desaturation and a peroxisomal chain shortening step. This paper describes cDNAs, fad1 and fad2, isolated from the herbivorous, marine teleost fish (Siganus canaliculatus) with high similarity to mammalian Fad proteins. Functional characterization of the cDNAs by heterologous expression in the yeast Saccharomyces cerevisiae showed that Fad1 was a bifunctional Δ6/Δ5 Fad. Previously, functional dual specificity in vertebrates had been demonstrated for a zebrafish Danio rerio Fad and baboon Fad, so the present report suggests bifunctionality may be more widespread in vertebrates. However, Fad2 conferred on the yeast the ability to convert 225n - 3 to DHA indicating that this S. canaliculatus gene encoded an enzyme having Δ4 Fad activity. This is a unique report of a Fad with Δ4 activity in any vertebrate species and indicates that there are two possible mechanisms for DHA biosynthesis, a direct route involving elongation of EPA to 225n - 3 followed by Δ4 desaturation, as well as the more complicated pathway as described above.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Perciformes/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario/genética , Ácido Graso Desaturasas/clasificación , Ácido Graso Desaturasas/genética , Datos de Secuencia Molecular , Perciformes/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA