RESUMEN
The combination of Alismatis Rhizoma (AR) and Rhizoma Smilacis Glabrae (RSG), as Chinese herb medicine, has been used for their uric acid-lowering effect. However, the effects and mechanism of the combination of the two medicines have not been fully reported. Therefore, to explore the effects of AR-RSG combination decoction on the treatment of chronic hyperuricemia (HUA) in rats as well as the underlying mechanisms, in this study, at the first stage, a long-term HUA rats model was established by gavage of oteracil potassium plus adenine; allopurinol was used as the positive control, and the uric acid-lowering effects of AR or RSG decoction alone with low and high dose were evaluated, respectively. Serum uric acid (UA) and xanthine oxidase (XOD) were determined mainly, and pathological analysis of the kidney and liver was carried out after sacrifice of the animals. And then, at the second stage, four dose groups of AR-RSG combination treatment were investigated in HUA rats. In addition to the indicators measured at the first stage, the expression of urate anion exchanger 1 (URAT1) in rat kidney was determined by immunohistochemistry. We discovered that the UA levels of the model group in both stages were significantly and steadily higher than those of control groups. AR and RSG alone or in combination possess ability to decrease serum UA level of HUA rats, with effects more marked in the combination groups. The uric acid-lowering mechanism of AR-RSG combination may be related to its inhibiting activity of XOD, improving kidney damage and downregulating the expression of URAT1 in kidney.
RESUMEN
OBJECTIVES: Recombinant tissue plasminogen activator (rt-PA) is a safe and effective treatment for acute brain ischemia stroke, albeit with a narrow therapeutic window. We aimed to assess the effect of epigallocatechin gallate (EGCG) in extending the rt-PA treatment window in this clinical trial among stroke patients. METHODS: Patients were randomly assigned according to their onset-to-treatment time (OTT) and were then treated with rt-PA simultaneously with EGCG or placebo. Treatment outcome was assessed by the National Institutes of Health stroke scale (NIHSS) and plasma levels of matrix metalloproteinases (MMP)-2 and 9. RESULTS: Administration of EGCG significantly improved treatment outcomes of patients in the delayed OTT strata, as evidenced by improved NIHSS scores. This improved treatment outcome was likely attributed to reduction in plasma levels of both MMP-2 and 9, as indicated by strong linear correlations between both MMPs and NIHSS scores in all patients. CONCLUSIONS: Epigallocatechin gallate could potentially be used as a supplement of traditional rt-PA treatment among stroke patients, particularly those with delayed OTT, to extend the otherwise narrow therapeutic window and improve the outcome in late stroke treatment.