Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Water Sci Technol ; 87(8): 1945-1960, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37119165

RESUMEN

A mechanical flocculation system with multi-chambers in series is commonly used as the advanced phosphorus removal technology for wastewater treatment. This work aims to numerically investigate the inner states and overall performance of industrial-scale mechanical flocculators in series. This is based on our previously developed computational fluid dynamics (CFD) flocculation model which is extended to consider the key chemical reactions of phosphorus removal. The effects of the number of flocculation chambers, locations, and sizes of the flocculation chamber connection as well as operational combinations of impeller speeds are investigated. With a decreasing number of flocculation chambers, the main vortexes and chemical reactions are weakened, while the small flocs form. Both the phosphorus removal efficiency η and the average floc size dp reduce as the number of flocculation chambers decreases. The connection location of flocculation chambers directly determines the turbulent flow, thus influencing the key performance indicators. However, the phosphorus removal efficiency η and average particle size dp are little affected by the size of the flocculation chamber connection. As the impeller speeds in series gradually increase, the gradient of floc size distribution in each chamber is enlarged and the chemical reaction is enhanced over the working volume.


Asunto(s)
Purificación del Agua , Floculación , Simulación por Computador , Tamaño de la Partícula , Fósforo
2.
Waste Manag ; 109: 161-170, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32408099

RESUMEN

Due to the increasing coffee production, Spent Coffee Grounds' (SCGs) generation has grown dramatically, hence appropriate management of this solid biomass waste is imperative. SCGs can be used as feedstocks for renewable energy and fuel generation provided that a stable feeding of powders to reactors is maintained. Recently, a non-mechanical spouted bed feeder proved itself an excellent alternative in feeding SCGs to a pilot-scale circulating fluidized bed reactor. Nonetheless, further studies are necessary for the feeder's implementation in commercial applications. Here the feeding of SCGs with the spouted bed feeder is addressed by using Computational Fluid Dynamics. Firstly, a Two-Fluid Model (TFM) is validated against experimental data, and then the effects of five operating and design parameters were analyzed aiming at improving the handling of SCGs. The solids flowrate (WS) in the reactor could be stably controlled from 4 to 30 g/s depending on the settings. The feeder performance is enhanced by operating it under high gas flowrate (Q), high entrainment length (z), and high mass of solids in the feeder (HS). Using feeders with low cone angle (γ) or reactors with large diameter (DR) increases WS, which is appealing for the operation of medium-to large-scale units. The proposed TFM is a cost-effective tool for implementing spouted bed feeders in commercial applications. With the feeder coupled to the process, SCGs are treated continuously in the reactor for energy generation, thus reducing the disposal problems associated with this waste and improving the management of SCGs globally.


Asunto(s)
Café , Residuos Sólidos , Biomasa
3.
ACS Appl Mater Interfaces ; 7(46): 25658-68, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26535913

RESUMEN

Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 µM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon-coated nanostructures that are biocompatible and could potentially be employed in a wide range of biomedical applications.


Asunto(s)
Materiales Biocompatibles/síntesis química , Carbono/química , Oro/química , Hipertermia Inducida , Nanotecnología/métodos , Fototerapia , Ensayo de Materiales , Nanotubos/química , Nanotubos/ultraestructura , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA