Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155517, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518650

RESUMEN

BACKGROUND: Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE: This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS: Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS: Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION: Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.


Asunto(s)
Berberina , Microbioma Gastrointestinal , Fenilacetatos , Trombosis , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Berberina/farmacología , Berberina/análogos & derivados , Trombosis/prevención & control , Masculino , Ratones , Fenilacetatos/farmacología , Carragenina , Coptis/química , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Trasplante de Microbiota Fecal , ARN Ribosómico 16S
2.
Phytomedicine ; 123: 155252, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056145

RESUMEN

BACKGROUND: Acute kidney injury (AKI) has high morbidity and mortality, which is manifested by inflammation and apoptosis. Effective treatment methods for AKI are currently lacking. OBJECTIVE: This study demonstrated the protecting effects of Madecassoside (MA) in the cisplatin- and hypoxia-reoxygenation-induced renal tubular epithelial cells in vitro and AKI mice in vivo. METHODS: In vivo AKI mouse models were established by inducing them with cisplatin and renal ischemia-reperfusion. In vitro injury models of mouse renal tubular epithelial cells were established by inducing them with cisplatin and hypoxia and reoxygenation, respectively. The mechanism of MA effects was further explored using molecular docking and RNA-sequencing. RESULTS: MA could significantly reduce kidney injury in the cisplatin-and renal ischemia-reperfusion (IRI)-induced AKI. Further validation in the two cellular models also showed that MA had protect effects. MA can alleviate AKI in vitro and in vivo by inhibiting inflammation, cell apoptosis, and oxidative stress. MA exhibited high permeability across the Caco-2 cell, can enter cells directly. Through RNA-seq and molecular docking analysis, this study further demonstrated that MA inhibits its activity by directly binding to JNK kinase, thereby inhibiting c-JUN mediated cell apoptosis and improving AKI. In addition, MA has better renal protective effects compared to curcumin and JNK inhibitor SP600125. CONCLUSION: The results demonstrate that MA might be a potential drug for the treatment of AKI and act through the JNK/c-JUN signaling pathway.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Triterpenos , Humanos , Ratones , Animales , Cisplatino/efectos adversos , Células CACO-2 , Simulación del Acoplamiento Molecular , Lesión Renal Aguda/inducido químicamente , Apoptosis , Riñón , Estrés Oxidativo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia , Inflamación/metabolismo , Hipoxia , Ratones Endogámicos C57BL
3.
Food Microbiol ; 117: 104387, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37919011

RESUMEN

Ultrasonic treatment is widely used for surface cleaning of vegetables in the processing of agricultural products. In the present study, the molecular and proteomic response of Pseudomonas fluorescens biofilm cultured on lettuce was investigated after ultrasound treatment at different intensity levels. The results show that the biofilm was efficiently removed after ultrasound treatment with intensity higher than 21.06 W/cm2. However, at an intensity of less than 18.42 W/cm2, P. fluorescens was stimulated by ultrasound leading to promoted bacterial growth, extracellular protease activity, extracellular polysaccharide secretion (EPS), and synthesis of acyl-homoserine lactones (AHLs) as quorum-sensing signaling molecules. The expression of biofilm-related genes, stress response, and dual quorum sensing system was upregulated during post-treatment ultrasound. Proteomic analysis showed that ultrasound activated proteins in the flagellar system, which led to changes in bacterial tendency; meanwhile, a large number of proteins in the dual-component system began to be regulated. ABC transporters accelerated the membrane transport of substances inside and outside the cell membrane and equalized the permeability conditions of the cell membrane. In addition, the expression of proteins related to DNA repair was upregulated, suggesting that bacteria repair damaged DNA after ultrasound exposure.


Asunto(s)
Lactuca , Pseudomonas fluorescens , Pseudomonas fluorescens/fisiología , Proteómica , Biopelículas , Percepción de Quorum
5.
Biotechnol Biofuels Bioprod ; 16(1): 169, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932798

RESUMEN

BACKGROUND: Cottonseed oil is a promising edible plant oil with abundant unsaturated fatty acids. However, few studies have been conducted to explore the characteristics of cottonseed oil. The molecular mechanism of cottonseed oil accumulation remains unclear. RESULTS: In the present study, we conducted comparative transcriptome and weighted gene co-expression network (WGCNA) analysis for two G. hirsutum materials with significant difference in cottonseed oil content. Results showed that, between the high oil genotype 6053 (H6053) and the low oil genotype 2052 (L2052), a total of 412, 507, 1,121, 1,953, and 2,019 differentially expressed genes (DEGs) were detected at 10, 15, 20, 25, and 30 DPA, respectively. Remarkably, a large number of the down-regulated DEGs were enriched in the phenylalanine metabolic processes. Investigation into the dynamic changes of expression profiling of genes associated with both phenylalanine metabolism and oil biosynthesis has shed light on a significant competitive relationship in substrate allocation during cottonseed development. Additionally, the WGCNA analysis of all DEGs identified eight distinct modules, one of which includes GhPXN1, a gene closely associated with oil accumulation. Through phylogenetic analysis, we hypothesized that GhPXN1 in G. hirsutum might have been introgressed from G. arboreum. Overexpression of the GhPXN1 gene in tobacco leaf suggested a significant reduction in oil content compared to the empty-vector transformants. Furthermore, ten other crucial oil candidate genes identified in this study were also validated using quantitative real-time PCR (qRT-PCR). CONCLUSIONS: Overall, this study enhances our comprehension of the molecular mechanisms underlying cottonseed oil accumulation.

6.
Chin J Integr Med ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947990

RESUMEN

OBJECTIVE: To evaluate the efficacy of Guanxin Danshen Dripping Pill (GXDSDP) in treating anxiety and depression in patients with coronary heart disease (CHD). METHODS: A total of 1,428 patients diagnosed with CHD screened for anxiety, depression, and quality of life (QOL) at baseline received 0.4 g of GXDSDP treatment 3 times per day and returned for monthly reassessment. Patients were recruited after stable treatment for CHD and received assessment of General Anxiety Disorder-7 (GAD-7), Patient Health Questionnaire-9 (PHQ-9), and Seattle Angina Questionnaire (SAQ) for evaluating anxiety, depression, and QOL. Patients were followed up 3 times, once every 4 weeks, during outpatient visits for 12 weeks. RESULTS: At the third follow-up (F3), the anxiety symptom of 63.79% (673/1,055) of the patients improved to sub-clinical level, and the GAD-7 score improved significantly (8.11 vs. 3.87, P<0.01); 57.52% (585/1,017) patients' depressive symptoms improved to sub-clinical level, with a significant improvement in PHQ-9 score (8.69 vs. 4.41, P<0.01) at F3. All aspects of QOL significantly improved at the end of treatment compared to those at baseline (all P<0.01) as assessed by SAQ: physical limitation (31.17 vs. 34.14), anginal stability (2.74 vs. 4.14), anginal frequency (8.16 vs. 9.10), treatment satisfaction (13.43 vs. 16.29), and disease perception (8.69 vs. 11.02). CONCLUSIONS: A fixed dosage of GXDSDP may be a potential treatment option for CHD patients comorbid with anxiety or depression. (Registration No. ChiCTR2100051523).

7.
Molecules ; 28(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894624

RESUMEN

Ampelopsis grossedentata (AG) is mainly distributed in Chinese provinces and areas south of the Yangtze River Basin. It is mostly concentrated or scattered in mountainous bushes or woods with high humidity. Approximately 57 chemical components of AG have been identified, including flavonoids, phenols, steroids and terpenoids, volatile components, and other chemical components. In vitro studies have shown that the flavone of AG has therapeutic properties such as anti-bacteria, anti-inflammation, anti-oxidation, enhancing immunity, regulating glucose and lipid metabolism, being hepatoprotective, and being anti-tumor with no toxicity. Through searching and combing the related literature, this paper comprehensively and systematically summarizes the research progress of AG, including morphology, traditional and modern uses, chemical composition and structure, and pharmacological and toxicological effects, with a view to providing references for AG-related research.


Asunto(s)
Ampelopsis , Medicamentos Herbarios Chinos , Plantas Medicinales , Ampelopsis/química , Medicamentos Herbarios Chinos/química , Flavonoides/farmacología , Flavonoides/química , Glucosa , Fitoquímicos/farmacología , Etnofarmacología , Extractos Vegetales/química
8.
BMC Biol ; 21(1): 237, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904147

RESUMEN

BACKGROUND: Melanin plays important roles in morphological development, survival, host-pathogen interactions and in the virulence of phytopathogenic fungi. In Verticillum dahliae, increases in melanin are recognized as markers of maturation of microsclerotia which ensures the long-term survival and stress tolerance, while decreases in melanin are correlated with increased hyphal growth in the host. The conserved upstream components of the VdCmr1-regulated pathway controlling melanin production in V. dahliae have been extensively identified, but the direct activators of this pathway are still unclear. RESULTS: We identified two genes encoding conserved C2H2-type zinc finger proteins VdZFP1 and VdZFP2 adjacent to VdPKS9, a gene encoding a negative regulator of both melanin biosynthesis and microsclerotia formation in V. dahliae. Both VdZFP1 and VdZFP2 were induced during microsclerotia development and were involved in melanin deposition. Their localization changed from cytoplasmic to nuclear in response to osmotic pressure. VdZFP1 and VdZFP2 act as modulators of microsclerotia melanization in V. dahliae, as confirmed by melanin biosynthesis inhibition and supplementation with the melanin pathway intermediate scytalone in albino strains. The results indicate that VdZFP1 and VdZFP2 participate in melanin biosynthesis by positively regulating VdCmr1. Based on the results obtained with yeast one- and two-hybrid (Y1H and Y2H) and bimolecular fluorescence complementation (BiFC) systems, we determined the melanin biosynthesis relies on the direct interactions among VdZFP1, VdZFP2 and VdCmr1, and these interactions occur on the cell walls of microsclerotia. Additionally, VdZFP1 and/or VdZFP2 mutants displayed increased sensitivity to stress factors rather than alterations in pathogenicity, reflecting the importance of melanin in stress tolerance of V. dahliae. CONCLUSIONS: Our results revealed that VdZFP1 and VdZFP2 positively regulate VdCmr1 to promote melanin deposition during microsclerotia development, providing novel insight into the regulation of melanin biosynthesis in V. dahliae.


Asunto(s)
Ascomicetos , Verticillium , Melaninas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium/genética , Dedos de Zinc , Enfermedades de las Plantas/microbiología
9.
Pharmacol Res ; 197: 106950, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820854

RESUMEN

Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.


Asunto(s)
Enfermedades Renales , Humanos , Acetilación , Enfermedades Renales/tratamiento farmacológico , Riñón , Epigénesis Genética , Epigenómica
10.
Phytomedicine ; 118: 154941, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451150

RESUMEN

BACKGROUND: Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airflow limitation, airway inflammation and remodeling. Icariside II (IS), derived from herbal medicine Herba Epimedii, exerts an anti-inflammatory property. However, underlying mechanisms with specifically targeted molecular expression by IS in asthma have not been fully understood, and whether IS could inhibit remodeling and EMT still remains unclear. PURPOSE: The study aimed to clarify therapeutic efficacy of IS for attenuating airway inflammation and remodeling in asthma, and illustrate IS-regulated specific pathway and target proteins through TMT-based quantitative proteomics. STUDY DESIGN AND METHODS: Murine model of chronic asthma was constructed with ovalbumin (OVA) sensitization and then challenge for 8 weeks. Pulmonary function, leukocyte count in bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory and fibrotic cytokines, and markers of epithelial-mesenchymal transition (EMT) were evaluated. TMT-based quantitative proteomics were performed on lung tissues to explore IS-regulated proteins. RESULTS: IS contributed to alleviative airway hyperresponsiveness (AHR) evidenced by declined RL and increased Cdyn. After IS treatment, we observed a remarked down-regulation of leukocyte count, inflammatory cytokines in BALF, and peribronchial inflammation infiltration. Goblet cell hyperplasia, mucus secretion and peribronchial collagen deposition were attenuated, with the level of TGF-ß and MMP-9 in BALF declined. Furthermore, IS induced a rise of Occludin and E-cadherin and a decline of N-cadherin and α-SMA in lung tissues. These results proved the protective property of IS against airway inflammation, remodeling and EMT. To further investigate underlying mechanisms of IS in asthma treatment, TMT-based quantitative proteomics were performed and 102 overlapped DEPs regulated by IS were identified. KEGG enrichment exhibited these DEPs were enriched in lysosome, phagosome and autophagy, in which LAMP2, CTSD and CTSS were common DEPs. WB, q-PCR and IHC results proofed expressional alteration of these proteins. Besides, IS could decrease Beclin-1 and LC3B expression with increasing p62 expression thus inhibiting autophagy. CONCLUSIONS: The study demonstrated IS could ameliorate AHR, airway inflammation, remodeling and EMT in OVA-induced chronic asthma mice. Our research was the first to reveal that inhibition of LAMP2, CTSD and CTSS expression in autophagy contributed to the therapeutic efficacy of IS to asthma.


Asunto(s)
Asma , Proteómica , Ratones , Animales , Ovalbúmina , Asma/tratamiento farmacológico , Asma/metabolismo , Pulmón/patología , Inflamación/metabolismo , Líquido del Lavado Bronquioalveolar , Citocinas , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
11.
Mol Breed ; 43(1): 3, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37312870

RESUMEN

Gamma-amino butyric acid (GABA) is a natural non-protein amino acid involved in stress, signal transmission, carbon and nitrogen balance, and other physiological processes in plants. In the human body, GABA has the effects of lowering blood pressure, anti-aging, and activating the liver and kidneys. However, there are few studies on the molecular regulation mechanism of genes in the metabolic pathways of GABA during grain development of giant embryo rice with high GABA content. In this study, three glant embryo (ge) mutants of different embryo sizes were obtained by CRISPR/Cas9 knockout, and it was found that GABA, protein, crude fat, and various mineral contents of the ge mutants were significantly increased. RNA-seq and qRT-PCR analysis showed that in the GABA shunt and polyamine degradation pathways, the expression levels of most of the genes encoding enzymes promoting GABA accumulation were significantly upregulated in the ge-1 mutant, whereas, the expression levels of most of the genes encoding enzymes involved GABA degradation were significantly downregulated in the ge-1 mutant. This is most likely responsible for the significant increase in GABA content of the ge mutant. These results help reveal the molecular regulatory network of GABA metabolism in giant embryo rice and provide a theoretical basis for the study of its development mechanisms, which is conducive to the rapid cultivation of GABA-rich rice varieties, promoting human nutrition, and ensuring health. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01353-1.

12.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175760

RESUMEN

Phytophthora infestans poses a serious threat to potato production, storage, and processing. Understanding plant immunity triggered by fungal elicitors is important for the effective control of plant diseases. However, the role of the potato stress response to Fusarium toxin deoxynivalenol (DON)-induced stress is still not fully understood. In this study, the metabolites of DON-treated potato tubers were studied for four time intervals using UPLC-MS/MS. We identified 676 metabolites, and differential accumulation metabolite analysis showed that alkaloids, phenolic acids, and flavonoids were the major differential metabolites that directly determined defense response. Transcriptome data showed that differentially expressed genes (DEGs) were significantly enriched in phenylpropane and flavonoid metabolic pathways. Weighted gene co-expression network analysis (WGCNA) identified many hub genes, some of which modulate plant immune responses. This study is important for understanding the metabolic changes, transcriptional regulation, and physiological responses of active and signaling substances during DON induction, and it will help to design defense strategies against Phytophthora infestans in potato.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Transcriptoma , Solanum tuberosum/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Flavonoides/metabolismo , Metaboloma , Enfermedades de las Plantas/microbiología , Phytophthora infestans/genética , Regulación de la Expresión Génica de las Plantas
13.
Phytother Res ; 37(9): 4002-4017, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37128812

RESUMEN

Persistent chronic inflammation of the lungs and airway remodeling are important pathological features that cannot be ignored in patients with chronic asthma. Apigenin (API) is a natural small molecule compound with good anti-inflammatory and antioxidant activity that has been widely reported in recent years, but its role in chronic asthma is not well defined. Our study began with oral gavage intervention using API (10, 20 mg/kg) or dexamethasone (DEX, 2 mg/kg) in a BALB/c mouse model of ovalbumin (OVA) sensitization. Different doses of API intervention effectively reduced airway resistance in the administered group. Additionally, inflammation was downregulated, mucus secretion was reduced, and airway remodeling was inhibited in the API intervention group compared with the model group. Asthma-related inflammatory cytokines, such as IgE, IL-4, IL-5, IL-13, and IL-17, were downregulated in alveolar lavage fluid. Moreover, the apoptosis level of the administered group was found to be lower than that of the model group in the Tunel staining experiment. By analyzing transcriptome sequencing results, we found that API may exert anti-inflammatory and anti-apoptotic effects by inhibiting the MAPK pathway. Our subsequent results supported this conclusion, showing that the phosphorylation levels of ERKs, JNKs, and p38 MAPKs were inhibited in the administered group relative to the model group. Downstream expression of the apoptosis-related protein B-cell lymphoma-2 (Bcl-2) was upregulated, and the expression of Bcl-2-associated × protein (Bax) and cleaved caspase-3 was downregulated. To further investigate the specific mechanism by which API acted, we established an in vitro model with house dust mite (HDM) stimulation, using API (10, 20 µM) for administration intervention. The results showed that API was able to improve cell viability, inhibit ROS production, and reverse HDM-induced decreases in mitochondrial membrane potential (MMP) and apoptosis in airway epithelial cells via the MAPK pathway.


Asunto(s)
Apigenina , Asma , Animales , Ratones , Apigenina/farmacología , Remodelación de las Vías Aéreas (Respiratorias) , Transcriptoma , Asma/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Apoptosis , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
14.
Phytomedicine ; 116: 154841, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196513

RESUMEN

BACKGROUND: Plantaginis Herba (Plantago asiatica L.) has the effects of clearing heat and diuresis, oozing wet and drenching. As the main active components of Plantaginis Herba (Plantago asiatica L.), plantamajoside have a wide range of antitumor activities but very low bioavailability. The process of interacting between plantamajoside and gut microbiota remains unclear. PURPOSE: To illustrate the process of interacting between plantamajoside and gut microbiota based on high-resolution mass spectrometry and targeted metabolomics methods. STUDY DESIGN AND METHODS: This experiment was divided into two parts. First, metabolites produced from plantamajoside by gut microbiota were identified and quantified based on high-resolution mass spectrometry and LC-MS/MS. Additionally, stimulation of plantamajoside on gut microbiota-derived metabolites was determined by targeted metabolomics and gas chromatography. RESULTS: We first found that plantamajoside was rapidly metabolized by gut microbiota. Then, we identified metabolites of plantamajoside by high-resolution mass spectrometry and speculated that plantamajoside was metabolized into five metabolites including calceolarioside A, dopaol glucoside, hydroxytyrosol, 3-(3-hydroxyphenyl) propionic acid (3-HPP) and caffeic acid. Among them, we quantitatively analyzed four possible metabolites based on LC‒MS/MS and found that hydroxytyrosol and 3-HPP were final products by the gut microbiota. In addition, we studied whether plantamajoside could affect the short-chain fatty acid (SCFA) and amino acid metabolites. We found that plantamajoside could inhibit the acetic acid, kynurenic acid (KYNA) and kynurenine (KN) produced by intestinal bacteria and promote the indole propionic acid (IPA) and indole formaldehyde (IALD) produced by intestinal bacteria. CONCLUSION: An interaction between plantamajoside and gut microbiota was revealed in this study. Unlike the traditional metabolic system, the special metabolic characteristics of plantamajoside in gut microbiota was found. Plantamajoside was metabolized into the following active metabolites: calceolarioside A, dopaol glucoside, hydroxytyrosol, caffeic acid and 3-HPP. Besides, plantamajoside could affect SCFA and tryptophan metabolism by gut microbiota. Especially, the exogenous metabolites hydroxytyrosol, caffeic acid and endogenous metabolites IPA may have potential association with the antitumor activity of plantamajoside.


Asunto(s)
Microbioma Gastrointestinal , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Glucósidos/farmacología , Interacciones Farmacológicas
15.
J Ethnopharmacol ; 315: 116691, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37247682

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jia-Wei-Bu-Shen-Yi-Qi formula (JWBSYQF), a classical traditional Chinese herbal formula consisting of five herbs, is used clinically in China to treat inflammatory lung diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Its mechanism for treating asthma and COPD has been reported, however, how it works against IPF remains unclear. RESEARCH PURPOSE: Our study aims to observe the therapeutic effect of JWBSYQF on pulmonary fibrosis and further identify the potential active ingredients and molecular pathways. RESEARCH METHODS: In this study, we used a bleomycin-induced mouse model to investigate the therapeutic effect of JWBSYQF on pulmonary fibrosis. To further explore the potential effective ingredients and molecular pathways, we used the network pharmacology approach to construct a drug-ingredient-target network of JWBSYQF. Then, the common target set was established for JWBSYQF, fibroblast, and lung fibrosis. Analyses of the KEGG pathway, GO enrichment, and network topology were performed to identify key biological processes and molecular pathways for the common targets. Finally, a TGF-ß-induced NIH/3T3 proliferation and activation model was used to validate the possible active ingredients and signaling pathways. RESEARCH RESULTS: JWBSYQF reversed BLM-induced balf leukocyte levels, pulmonary inflammatory lesions and fibrotic collagen deposition in mice and reduced the levels of a-SMA, Col1a1 and TGF-ß. A total of 86 active ingredients were identified, 12 of which were considered as potential effective ingredients, while only baicalein effectively improved TGF-ß-induced proliferation and activation of NIH/3T3. KEGG results showed that PI3K/Akt signaling pathway may be the potential action mechanism, and Western Blot demonstrated that both JWBSYQF and baicalein downregulated the protein levels of p-PI3K and p-Akt. The molecular docking results suggest that baicalein may have a direct effect on the catalytic and regulatory subunits of P13K, which is stronger than direct binding to Aktl. CONCLUSIONS: Our study revealed that baicalein may be the material basis for JWBSYQF in the treatment of pulmonary fibrosis, and the PI3K/Akt signaling pathway may be a common pathway of action for JWBSYQF and baicalein.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Fibrosis Pulmonar Idiopática , Enfermedad Pulmonar Obstructiva Crónica , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Farmacología en Red , Simulación del Acoplamiento Molecular , Transducción de Señal , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
16.
J Ethnopharmacol ; 313: 116555, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100263

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY: The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS: XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS: The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS: The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Ratas , Animales , Medicina Tradicional China , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Encéfalo
17.
Am J Cancer Res ; 13(2): 394-407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895977

RESUMEN

The liver metastasis is the primary factor attributing to the poor prognosis of colorectal cancer (CRC). Moxibustion has been used clinically against multiple malignancies. In this study, we explored the safety, efficacy, and the potential functional mechanisms of moxibustion in modulating the liver metastasis of CRC by using GFP-HCT116 cells-derived CRC liver metastasis model in Balb/c nude mice. The tumor bearing mice were randomly divided into model control and treatment groups. Moxibustion was applied to the BL18 and ST36 acupoints. CRC liver metastasis was measured by fluorescence imaging. Furthermore, feces from all mice were collected, and 16S rRNA analysis was used to assess their microbial diversity, which was analyzed for its correlation with liver metastasis. Our results indicated that the liver metastasis rate was decreased significantly by moxibustion treatment. Moxibustion treatment also caused statistically significant changes in the gut microbe population, suggesting that moxibustion reshaped the imbalanced gut microbiota in the CRC liver metastasis mice. Therefore, our findings provide new insights into the host-microbe crosstalk during CRC liver metastasis and suggest moxibustion could inhibit CRC liver metastasis by remolding the structure of destructed gut microbiota community. Moxibustion may serve as a complementary and alternative therapy for the treatment of patients with CRC liver metastasis.

18.
Phytomedicine ; 114: 154763, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001295

RESUMEN

BACKGROUND: Membranous nephropathy (MN) is one of the cardinal causes of nephrotic syndrome in adults, but an adequate treatment regimen is lacking. PURPOSE: We assessed the effect of Moshen granule (MSG) on patients with MN and cationic bovine serum albumin (CBSA)-induced rats. We further identified the bioactive components of MSG and revealed the underlying molecular mechanism of its renoprotective effects. METHODS: We determined the effect of MSG on patients with MN and CBSA-induced rats and its components on podocyte injury in zymosan-activated serum (ZAS)-elicited podocytes and revealed their regulatory mechanism on the Wnt/ß-catenin/renin-angiotensin system (RAS) signalling axis. RESULTS: MSG treatment improved renal function and reduced proteinuria in MN patients and significantly reduced proteinuria and preserved the protein expression of podocin, nephrin, podocalyxin and synaptopodin in CBSA-induced MN rats. Mechanistically, MSG treatment significantly inhibited the protein expression of angiotensinogen, angiotensin converting enzyme and angiotensin II type 1 receptor, which was accompanied by inhibition of the protein expression of Wnt1 and ß-catenin and its downstream gene products, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in CBSA-induced MN rats. We further identified 81 compounds, including astragaloside IV (AGS), calycosin, barleriside A and geniposidic acid, that preserve the podocyte-specific protein expression in ZAS-induced podocytes. Among these four compounds, AGS exhibited the strongest inhibitory effects on podocyte protein expression. AGS treatment significantly inhibited the protein expression of RAS components and Wnt1 and ß-catenin and its downstream gene products in ZAS-induced podocytes. In contrast, the inhibitory effect of AGS on podocyte-specific proteins, ß-catenin downstream gene products and RAS components was partially abolished in ZAS-induced podocytes treated with ICG-001 and ß-catenin siRNA. CONCLUSION: This study first demonstrates that AGS mitigates podocyte injury by inhibiting the activation of RAS signalling via the Wnt1/ß-catenin pathway by both pharmacological and genetic methods. Therefore, AGS might be considered a new ß-catenin inhibitor that inhibits the Wnt1/ß-catenin pathway to retard MN in patients.


Asunto(s)
Glomerulonefritis Membranosa , Sistema Renina-Angiotensina , Ratas , Animales , beta Catenina/metabolismo , Proteinuria , Vía de Señalización Wnt
19.
Chem Biodivers ; 20(4): e202300195, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36932465

RESUMEN

Six new withanolides, angulasteroidins A-F (1-6), along with twelve known analogs (7-18) were isolated from the whole plants of Physalis angulata. Their structures were elucidated by analysis of 1D and 2D NMR, ECD and IR spectra, HR-ESI-MS data, and ECD calculation. Compounds 1 and 6 were rare 1-10 seco withanolides. Compounds 2-4, 7-9, and 15 exhibited significant inhibitory activity on the production of nitric oxide in the LPS-activated RAW 264.7 mouse macrophage cell lines with IC50 values ranging from 0.23 to 9.06 µM.


Asunto(s)
Physalis , Witanólidos , Animales , Ratones , Relación Estructura-Actividad , Witanólidos/farmacología , Witanólidos/química , Óxido Nítrico , Células RAW 264.7 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Physalis/química , Physalis/metabolismo , Estructura Molecular
20.
Artículo en Inglés | MEDLINE | ID: mdl-36757908

RESUMEN

To date, plant medicine research has focused mainly on the chemical compositions of plant extracts and their medicinal effects. However, the therapeutic or toxic effects of nanoparticles in plant extracts remain unclear. In this study, large numbers of spherical nanoparticles were discovered in some plant extracts. Nanoparticles in Turkish galls extracts were used as an example to examine their pH responsiveness, free radical scavenging, and antibacterial capabilities. By utilizing the underlying formation mechanism of these nanoparticles, a general platform to produce spherical nanoparticles via direct self-assembly of Turkish gall extracts and various functional proteins was developed. The results showed that the nanoparticles retained both the antibacterial ability and intracellular carrier ability of the original protein or catechol. This work introduces a new member of the plant-derived edible nanoparticle (PDEN) family, establishes a simple and versatile platform for mass production nanoparticles, and provides new insight into the formation mechanism of nanoparticles during plant extraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA