Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 114: 154763, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001295

RESUMEN

BACKGROUND: Membranous nephropathy (MN) is one of the cardinal causes of nephrotic syndrome in adults, but an adequate treatment regimen is lacking. PURPOSE: We assessed the effect of Moshen granule (MSG) on patients with MN and cationic bovine serum albumin (CBSA)-induced rats. We further identified the bioactive components of MSG and revealed the underlying molecular mechanism of its renoprotective effects. METHODS: We determined the effect of MSG on patients with MN and CBSA-induced rats and its components on podocyte injury in zymosan-activated serum (ZAS)-elicited podocytes and revealed their regulatory mechanism on the Wnt/ß-catenin/renin-angiotensin system (RAS) signalling axis. RESULTS: MSG treatment improved renal function and reduced proteinuria in MN patients and significantly reduced proteinuria and preserved the protein expression of podocin, nephrin, podocalyxin and synaptopodin in CBSA-induced MN rats. Mechanistically, MSG treatment significantly inhibited the protein expression of angiotensinogen, angiotensin converting enzyme and angiotensin II type 1 receptor, which was accompanied by inhibition of the protein expression of Wnt1 and ß-catenin and its downstream gene products, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in CBSA-induced MN rats. We further identified 81 compounds, including astragaloside IV (AGS), calycosin, barleriside A and geniposidic acid, that preserve the podocyte-specific protein expression in ZAS-induced podocytes. Among these four compounds, AGS exhibited the strongest inhibitory effects on podocyte protein expression. AGS treatment significantly inhibited the protein expression of RAS components and Wnt1 and ß-catenin and its downstream gene products in ZAS-induced podocytes. In contrast, the inhibitory effect of AGS on podocyte-specific proteins, ß-catenin downstream gene products and RAS components was partially abolished in ZAS-induced podocytes treated with ICG-001 and ß-catenin siRNA. CONCLUSION: This study first demonstrates that AGS mitigates podocyte injury by inhibiting the activation of RAS signalling via the Wnt1/ß-catenin pathway by both pharmacological and genetic methods. Therefore, AGS might be considered a new ß-catenin inhibitor that inhibits the Wnt1/ß-catenin pathway to retard MN in patients.


Asunto(s)
Glomerulonefritis Membranosa , Sistema Renina-Angiotensina , Ratas , Animales , beta Catenina/metabolismo , Proteinuria , Vía de Señalización Wnt
2.
Phytomedicine ; 86: 153561, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33857850

RESUMEN

BACKGROUND: Peritoneal dialysis (PD) is an acknowledged treatment for patients with irreversible kidney failure. The treatment usually causes peritoneal dialysis-related peritonitis (PDRP), a common complication of PD that can lead to inadequate dialysis, gastrointestinal dysfunction, and even death. Recent studies indicated that Fushen Granule (FSG), a Chinese herbal formula, improves the treatment of PD. However, the mechanism of how FSG plays its role in the improvement is still unclear. Gut microbiota has been closely related to the development of various diseases. We carried out a randomized controlled trial to assess whether FSG can modulate the gut microbiota during PDRP treatment. METHODS: Forty-two PDRP patients were recruited into the clinical trial, and they were randomly divided into control(CON), probiotics(PRO) or Fushen granule group(FSG). To check whether FSG improve the PD treatment, we assessed the clinical parameters, including albumin(ALB), hemoglobin(HGB), blood urea nitrogen(BUN) and creatinine(CR). Fecal samples were collected before hospitalization and discharge, and stored at -80°C within 1 hour. And we assessed the microbial population and function by applying the 16S rRNA gene sequencing and functional enrichment analysis. RESULTS: Compared to control group, ALB is improved in both probiotics and FSG groups, while HGB is increased but BUN and CR is reduced in FSG group. Sequencing of 16S rRNA genes revealed that FSG and PRO affected the composition of the microbial community. FSG significantly increased a abundant represented by Bacteroides, Megamonas and Rothia, which was significantly correlated with the improvements in carbohydrate and amino acid metabolism. CONCLUSIONS: This study demonstrates that FSG ameliorates the nutritional status and improves the quality of life by enriching beneficial bacteria associated with metabolism. These results indicate that FSG as alternative medicine is a promising treatment for patients with PDRP.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Diálisis Peritoneal/efectos adversos , Peritonitis/tratamiento farmacológico , Peritonitis/etiología , Anciano , Nitrógeno de la Urea Sanguínea , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida , ARN Ribosómico 16S/análisis , Albúmina Sérica Humana/análisis , Resultado del Tratamiento
3.
Artículo en Inglés | MEDLINE | ID: mdl-33747100

RESUMEN

PURPOSE: Fushen Granule (FSG) is a Chinese medicine prepared by doctors for treating patients with chronic renal failure, which is usually accompanied by gastrointestinal dysfunction. Here, we explore the protective effect of FSG on intestinal barrier injury in chronic renal failure through bioinformatic analysis and experimental verification. METHODS: In this study, information on the components and targets of FSG related to CRF is collected to construct and visualize protein-protein interaction networks and drug-compound-target networks using network pharmacological methods. DAVID is used to conduct gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, it is validated by in vitro experiments. In this study, the human intestinal epithelial (T84) cells are used and divided into four groups: control group, model group, FSG low-dose group, and FSG high-dose group. After the experiment, the activity of T84 cells is detected by a MTT assay, and the expressions of tight junction protein ZO-1, claudin-1, nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (HO-1), malondialdehyde (MDA), and cyclooxygenase-2 (COX-2) are examined by immunofluorescence and/or western blotting. RESULTS: Eighty-six potential chronic renal failure-related targets are identified by FSG; among them, nine core genes are screened. Furthermore, GO enrichment analysis shows that the cancer-related signaling pathway, the PI3K-Akt signaling pathway, the HIF1 signaling pathway, and the TNF signaling pathway may play key roles in the treatment of CRF by FSG. The MTT method showed that FSG is not cytotoxic to uremic toxin-induced injured T84 cells. The results of immunofluorescence and WB indicate that compared with the control group, protein expressions level of ZO-1, claudin-1, and Nrf2 in T84 cells is decreased and protein expressions level of HO-1, MDA, and COX-2 is increased after urinary toxin treatment. Instead, compared with the model group, protein expressions level of ZO-1, claudin-1, and Nrf2 in T84 cells is increased and protein expressions level of HO-1, MDA, and COX-2 is decreased after FSG treatment. CONCLUSION: FSG had a protective effect on urinary toxin-induced intestinal epithelial barrier injury in chronic renal failure, and its mechanism may be related to the upregulation of Nrf2/HO-1 signal transduction and the inhibition of tissue oxidative stress and inflammatory responses. Screening CRF targets and identifying the corresponding FSG components by network pharmacological methods is a practical strategy to explain the mechanism of FSG in improving gastrointestinal dysfunction in CRF.

4.
Front Pharmacol ; 11: 579241, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178022

RESUMEN

BACKGROUND: Considering the adverse reactions and side effects of immunosuppressive and cytotoxic drugs for the treatment of Primary Nephrotic Syndrome (PNS) and the extensive exploration of Chinese herbal injections (CHIs), systematic evaluation of the efficacy of different CHIs in the treatment of PNS is a key imperative. In this study, we performed a network meta-analysis to investigate the efficacy of CHIs in the treatment of PNS. METHODS: A systematic literature review including studies published from the establishment of each database to May 28, 2020, was conducted in PubMed, the Cochrane Library, Embase, Web of Science, the Chinese Biological Medicine Literature Service System (CBM), the China National Knowledge Infrastructure (CNKI) database, the Chinese Scientific Journal Database (VIP), and the Wanfang Database (WF).Two evaluators independently screened the literature, extracted data and the Cochrane Reviewer's Handbook 5.1 method was used to evaluate the quality of included studies. The differences in efficacy of different CHIs were compared and ranked using Stata 16.0 software. Surface under the cumulative ranking curve (SUCRA) probability values were applied to rank the examined treatments. Clustering analysis was performed to compare the effects of CHIs between two different outcomes. RESULTS: A total of 41 eligible randomized controlled trials involving 2879 patients and nine CHIs were included. Nine CHIs were Xiangdan injection (XDI), Huangqi injection (HQI), Shenkang injection (SKI), Danshen injection (DSI), Yinxingdamo injection (YXI), Dengzhanhuasu injection (DZI), Danhong injection (DHI), Shuxuetong injection (SXI), Chuanxiongqin injection (CXI). The results of the network meta-analysis showed that: with Western medical (WM) treatment as a co-intervention, in terms of improving the total clinical effectiveness and serum albumin level, DHI was the most likely to be the best choice for treatment (SUCRA = 82.2%); YXI had the highest probability of being the best option in terms of reducing 24-h urinary protein excretion (SUCRA = 97.8%); in cholesterol-lowering comparisons, the SUCRA value allows for the most likely to be the best treatment is DZI (SUCRA = 84.5%). SXI was the most effective CHIs in terms of lowering serum triglycerides (SUCRA = 85.6%), whereas on the reducing fibrinogen side, the efficacy of CXI was significant (SUCRA = 67.6%). The result cluster analysis indicated that YXI and DHI were the best interventions with respect to total clinical effectiveness, 24-h urinary protein excretion and serum albumin. CONCLUSIONS: CHIs were found to be superior to WM alone in the treatment of PNS and may be beneficial for patients with PNS. WM+YXI and WM+DHI had the potential to be the best CHI with respect to the total clinical effectiveness, 24-h urinary protein excretion and serum albumin. However, more well-designed randomized controlled trials are still warranted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA