Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 653-660, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621869

RESUMEN

Quorum sensing system regulates the expression of genes related to bacterial growth, metabolism and other behaviors by sensing bacterial density, and controls the unified action of the entire bacterial population. This mechanism can ensure the normal secretion of bacterial metabolites and the stability of the biofilm microenvironment, providing protection for the formation of biofilms and the normal growth and reproduction of bacteria. Traditional Chinese medicine, capable of quorum sensing inhibition, can inhibit the formation of bacterial biofilms, reduce bacterial resistance, and enhance the anti-infection ability of antibiotics when combined with antibiotics. In recent years, the combination of traditional Chinese and Western medicine in the treatment of drug-resistant bacterial infections has become a research hotspot. Starting with the associations between quorum sensing, biofilm and drug-resistant bacteria, this paper reviews the relevant studies about the combined application of traditional Chinese medicines as quorum sensing inhibitors with antibiotics in the treatment of drug-resistant bacteria. This review is expected to provide ideas for the development of new clinical treatment methods and novel anti-infection drugs.


Asunto(s)
Infecciones Bacterianas , Percepción de Quorum , Humanos , Percepción de Quorum/genética , Medicina Tradicional China , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética , Biopelículas , Infecciones Bacterianas/tratamiento farmacológico
2.
J Chromatogr Sci ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576204

RESUMEN

An analytical method was developed for the screening of 172 veterinary drugs in traditional Chinese medicine Galli Gigerii Endothelium Corneum by high-performance liquid chromatography tandem mass spectrometry. The samples were pretreated by a modified QuEChERS method. A Zorbax Eclipse plus C18 column (1.8 µm, 3.0 × 150 mm2, Agilent) was used for the separation of analytes by gradient elution. All analytes were detected by electrospray ionization mass spectrometry with multiple reaction monitoring mode. Good linearity with R ≥ 0.99 was exhibited for all analytes within the respective range. The recoveries of all monitored analytes ranged from 55.4 to 127.6% at three spiked levels (limit of quantitation-LOQ, 2-fold LOQ, 10-fold LOQ), with relative standard deviations <17.8%. The estimated LOQ levels were 0.2-20 µg/kg. The application of this method provides a reference for the safety control of traditional Chinese medicines.

3.
Redox Biol ; 72: 103160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631120

RESUMEN

Iron overload can lead to oxidative stress and intestinal damage and happens frequently during blood transfusions and iron supplementation. However, how iron overload influences intestinal mucosa remains unknown. Here, the aim of current study was to investigate the effects of iron overload on the proliferation and differentiation of intestinal stem cells (ISCs). An iron overload mouse model was established by intraperitoneal injection of 120 mg/kg body weight iron dextran once a fortnight for a duration of 12 weeks, and an iron overload enteroid model was produced by treatment with 3 mM or 10 mM of ferric ammonium citrate for 24 h. We found that iron overload caused damage to intestinal morphology with a 64 % reduction in villus height/crypt depth ratio, and microvilli injury in the duodenum. Iron overload mediated epithelial function by inhibiting the expression of nutrient transporters and enhancing the expression of secretory factors in the duodenum. Meanwhile, iron overload inhibited the proliferation of ISCs and regulated their differentiation into secretory mature cells, such as goblet cells, through inhibiting Notch signaling pathway both in mice and enteroid. Furthermore, iron overload caused oxidative stress and ferroptosis in intestinal epithelial cells. In addition, ferroptosis could also inhibit Notch signaling pathway, and affected the proliferation and differentiation of ISCs. These findings reveal the regulatory role of iron overload on the proliferation and differentiation of ISCs, providing a new insight into the internal mechanism of iron overload affecting intestinal health, and offering important theoretical basis for the scientific application of iron nutrition regulation.


Asunto(s)
Diferenciación Celular , Ferroptosis , Células Caliciformes , Sobrecarga de Hierro , Estrés Oxidativo , Receptores Notch , Transducción de Señal , Células Madre , Animales , Ferroptosis/efectos de los fármacos , Ratones , Células Caliciformes/metabolismo , Sobrecarga de Hierro/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Diferenciación Celular/efectos de los fármacos , Receptores Notch/metabolismo , Estrés Oxidativo/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino
4.
Food Funct ; 15(8): 4575-4585, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587267

RESUMEN

Previous studies have shown that vitamin C (VC), an essential vitamin for the human body, can promote the differentiation of muscle satellite cells (MuSCs) in vitro and play an important role in skeletal muscle post-injury regeneration. However, the molecular mechanism of VC regulating MuSC proliferation has not been elucidated. In this study, the role of VC in promoting MuSC proliferation and its molecular mechanism were explored using cell molecular biology and animal experiments. The results showed that VC accelerates the progress of skeletal muscle post-injury regeneration by promoting MuSC proliferation in vivo. VC can also promote skeletal muscle regeneration in the case of atrophy. Using the C2C12 myoblast murine cell line, we observed that VC also stimulated cell proliferation. In addition, after an in vitro study establishing the occurrence of a physical interaction between VC and Pax7, we observed that VC also upregulated the total and nuclear Pax7 protein levels. This mechanism increased the expression of Myf5 (Myogenic Factor 5), a Pax7 target gene. This study establishes a theoretical foundation for understanding the regulatory mechanisms underlying VC-mediated MuSC proliferation and skeletal muscle regeneration. Moreover, it develops the application of VC in animal muscle nutritional supplements and treatment of skeletal muscle-related diseases.


Asunto(s)
Ácido Ascórbico , Proliferación Celular , Músculo Esquelético , Mioblastos , Factor de Transcripción PAX7 , Regeneración , Animales , Masculino , Ratones , Ácido Ascórbico/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Factor 5 Regulador Miogénico/genética , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Regeneración/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos
5.
J Cancer ; 15(8): 2318-2328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495493

RESUMEN

Aim of the study: To investigate the anti-tumor effects of Lasiokaurin on breast cancer and explore its underlying molecular mechanism. Materials and methods: In this study, MTT assay, plate colony formation assays, soft agar assay, and EdU assay were employed to evaluate the anti-proliferation effects of LAS. Apoptosis and cell cycle distribution were detected by flow cytometry. The molecular mechanism was predicted by performing RNA sequencing and verified by using immunoblotting assays. Breast cancer organiods derived from patient-derived xenografts model and MDA-MB-231 xenograft mouse model were established to assess the effect of LAS. Results: Our study showed that LAS treatment significantly suppressed cell viability of 5 breast cancer cell lines, with the IC50 value of approximately 1-5 µM. LAS also inhibitied the clonogenic ability and DNA synthesis of breast cancer cells, Moreover, LAS induced apoptosis and G2/M cell cycle arrest in SK-BR-3 and MDA-MB-231 cells. Notably, transcriptomic analysis predicted the mechanistic involvement of PLK1 in LAS-suppressed breast cancer progression. Our experiment data further verified that LAS reduced PLK1 mRNA and protein expression in breast cancer, accompanied by downregulating CDC25C and AKT phosphorylation. Ultimately, we confirmed that LAS inhibit breast cancer growth via inhibiting PLK1 pathway in vivo. Conclusions: Collectively, our findings revealed that LAS inhibits breast cancer progression via regulating PLK1 pathway, which provids scientific evidence for the use of traditional Chinese medicine in cancer therapy.

6.
J Agric Food Chem ; 72(11): 6040-6052, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38454851

RESUMEN

One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and ß-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.


Asunto(s)
Calostro , Glicoproteínas , Leche , Femenino , Embarazo , Lactante , Humanos , Animales , Calostro/metabolismo , Perilipina-2/metabolismo , Leche/metabolismo , Glucolípidos/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Leche/metabolismo , Caseínas/metabolismo
7.
IMA Fungus ; 15(1): 2, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336758

RESUMEN

Ophiocordyceps sinensis is a famous traditional Chinese medicine adapted to the alpine environment of the Qinghai-Tibet Plateau and adjacent regions. Clarification of the species diversity of Ophiocordyceps sinensis and its relatives could expand the traditional medicinal resources and provide insights into the speciation and adaptation. The study is prompted by the discovery of a new species, O. megala, described here from a biodiversity hotspot in the Hengduan Mountains, China. Combined morphological, ecological, and phylogenetic evidence supports its distinctiveness from O. sinensis, O. xuefengensis, and O. macroacicularis. Additionally, based on the phylogenetic construction of Ophiocordyceps, a special clade was focused phylogenetically on the more closely related O. sinensis complex, which was defined as the O. sinensis- species complex lineage. A total of 10 species were currently confirmed in this lineage. We made a comprehensive comparison of the sexual/asexual morphological structures among this species complex, distinguishing their common and distinctive features. Furthermore, using the method of species distribution modelling, we studied the species ocurrences in relation to climatic, edaphic, and altitudinal variables for the eight species in the O. sinensis-species complex, and determined that their potential distribution could extend from the southeastern Qinghai-Tibet Plateau to the Xuefeng Mountains without isolating barrier. Thus, the biodiversity corridor hypothesis was proposed around the O. sinensis-species complex. Our study highlights the phylogeny, species diversity, and suitable distribution of the O. sinensis-species complex lineage, which should have a positive implication for the resource discovery and adaptive evolution of this unique and valuable group.

8.
Zhongguo Zhong Yao Za Zhi ; 49(2): 550-558, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403329

RESUMEN

This study aimed to analyze the therapeutic effect of Zicuiyin on diabetic kidney disease(DKD) and explore the possible targets of this formula. Eighteen DKD patients treated in the endocrine department or nephrology department of Second Affilia-ted Hospital of Tianjin University of Traditional Chinese Medicine from January to December in 2019 were enrolled and assigned into a test group(n=10) and a control group(n=8). Both groups received routine chemical medicine treatment. In addition, the test group was treated with Zicuiyin and the control group with Huangkui Capsules for 8 weeks. The clinical trial was approved by the Ethics Committee of Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, with the ethical approval No. 2017-023-01, and all the patients signed the informed consent form. The results showed that the 8-week treatment with Zicuiyin lowered the level of glycosylated hemoglobin(HbA1c) and recovered the 24 h urinary protein(24hUP), 24 h urinary microalbumin(24hmAlb), urine albumin-to-creatinine ratio(UACR), and estimated glomerular filtration rate(eGFR) of the patients with 24hUP<3.5 g. According to the different levels in 24hUP, all the patients were divided into two subgroups(subgroup A with 24hUP<3.5 g and subgroup B with 24hUP≥3.5 g). The ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS)-based non-targeted metabolomics analysis was conducted on the baseline serum samples from diffe-rent subgroups of patients. Nineteen biomarker candidates were identified to distinguish the metabolic differences between the two subgroups, and their correlations with clinical indicators were analyzed. Zicuiyin lowered the levels of phenylalanine, pseudouridine, and adenosine [fold change(FC)<0.5, P<0.05] in subgroup A. The results indicated that Zicuiyin was more effective on the DKD patients with low urinary protein levels, and its targets were involved in phenylalanine metabolism and nucleoside metabolism.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Espectrometría de Masas en Tándem , Tasa de Filtración Glomerular , Metabolómica , Fenilalanina/uso terapéutico
9.
J Affect Disord ; 350: 340-349, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199411

RESUMEN

BACKGROUND: Patients with major depressive disorder (MDD) exhibit atypical brain activities in the frontal, temporal, and parietal lobes. The study aimed to investigate the effects of standardized weighted low-resolution electromagnetic tomography Z-score neurofeedback (swLZNFB) on symptoms of depression and anxiety, electroencephalography (EEG) parameters, and deep brain activities in patients with MDD. METHOD: Forty-eight patients with MDD comorbid with anxiety symptoms were assigned to the swLZNFB group and the control group. Participants completed the Beck Depression Inventory-II (BDI-II) and Beck Anxiety Inventory (BAI) and a 5-minute resting EEG at the pre-and post-tests. The swLZNFB group received ten sessions of one-hour treatment twice weekly. The control group received treatment as usual. The scores for BDI-II and BAI, number of EEG abnormalities, percentage of EEG abnormalities, and current source density (CSD) measured in the prefrontal cortex (PFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and amygdala were compared at pre-and post-tests between the two groups. RESULTS: There were decreased scores of BDI-II and BAI, number of EEG abnormalities, and percentage of EEG abnormalities at post-test compared with pre-test in the swLZNFB group, and lower scores of BDI-II and BAI at post-test in the swLZNFB group compared with the control group. Moreover, decreased CSD of beta1 and beta3 in the PFC, ACC, PCC, and amygdala at post-test compared to pre-test in the swLZNFB group. LIMITATIONS: Not a randomized controlled trial. CONCLUSION: Ten sessions of swLZNFB reduced clinical symptoms and atypical brain activities, it serves as a potential psychological intervention for patients with MDD.


Asunto(s)
Trastorno Depresivo Mayor , Neurorretroalimentación , Humanos , Neurorretroalimentación/métodos , Trastorno Depresivo Mayor/terapia , Ansiedad/terapia , Electroencefalografía , Trastornos de Ansiedad/terapia
10.
Sci Rep ; 14(1): 1823, 2024 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-38245596

RESUMEN

In this study, Penaeus monodon were gave basic feed supplemented with three levels of Enterococcus faecium. Then, the expression of non-specific immunity-related genes, and the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (AKP), phenol oxidase (PO) were evaluated. Meanwhile, the disease resistance test and intestinal flora determination were conducted. The results showed that the MDA levels of 2% and 5% E. faecium groups were significantly lower than that of the control group (P < 0.05). While the SOD and T-AOC and ACP and AKP of experimental groups were significantly higher (P < 0.05), the PO of experimental groups were significantly lower than that of the control group (P < 0.05). In addition, the expressions of immunity-related genes (tlr22, dorsal, lysozyme, crustin, imd, and relish) in the 2% and 5% E. faecalis groups were significantly greater than those in the control group (P < 0.05). After P. monodon was challenged with Vibrio parahaemolyticus for 7 days, the average cumulative mortality of P. monodon in the 2% and 5% groups were significantly lower than that in the 0% group (P < 0.05). With the increase of feeding time, the number of effective OTUs in each group showed a downward trend. At the 14th d, Proteobacteria, Bacteroidetes and Firmicutes, the dominant flora in the intestinal tract of P. monodon. In summary, supplied with E. faecium could increase the expression of non-specific immunity-related genes, enhance the immune capacity of P. monodon.


Asunto(s)
Enterococcus faecium , Microbioma Gastrointestinal , Penaeidae , Animales , Enterococcus faecium/metabolismo , Antioxidantes/metabolismo , Monofenol Monooxigenasa/metabolismo , Superóxido Dismutasa/metabolismo , Expresión Génica , Inmunidad Innata
11.
J Ethnopharmacol ; 325: 117807, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38280661

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease affecting the colon and rectum with an etiology that remains elusive. Traditional Chinese medicine (TCM) has been widely used on long-term UC treatment to better maintain the efficacy than traditional aminosalicylic acid or glucocorticosteroids and to ease financial burden of patients. Qingchang Wenzhong Decoction (QCWZD) is a modern TCM decoction with established clinical efficacy but the mechanism of its protection on intestinal barrier function remains unclear. AIM OF THE STUDY: Current findings highlight that the activation of the hypoxia inducible factor (HIF) pathway can facilitate the repair of intestinal epithelium barrier. This study is to investigate the protective effects of QCWZD and its HIF-targeted ingredients on hypoxia-dependent intestinal barrier. METHODS: The mice model of UC was induced by dextran sulfate sodium (DSS). Disease activity index (DAI) and histopathology scores and colon length were used to measure the severity of colitis. The DAO activity in serum and protein expression of tight junction (TJ) proteins were detected to explore the function of intestinal barrier. The protein levels of HIF-1α and its downstream gene heme oxygenase-1 (HO-1) were measured as well. HIF-targeted active ingredients in QCWZD were selected by network pharmacology and molecular docking. Protective effects of six constituents on HIF-related anti-oxidative and barrier protective pathway were evaluated by lipopolysaccharide (LPS)-induced HT29 and RAW264.7 cells, through the measurement of the production of ROS and mRNA level of pro-inflammatory cytokines. HIF-1α knockdown was carried out to explore the correlation of protection effects with HIF-related pathway of the active ingredients. RESULTS: QCWZD effectively alleviated colitis induced by DSS and demonstrated a protective effect on intestinal barrier function by upregulating HIF-related pathways. Six specific ingredients in QCWZD, targeting HIF, successfully reduced the production of cellular ROS and proinflammatory cytokines in LPS-induced cells. It is noteworthy that the barrier protection provided by these molecules is intricately linked with the HIF-related pathway. CONCLUSIONS: This study elucidates the HIF-related molecular mechanism of QCWZD in protecting the function of the epithelial barrier. Six compounds targeting the activation of the HIF-dependent pathway were demonstrated to unveil a novel therapeutic approach for managing UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratones , Animales , Humanos , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Especies Reactivas de Oxígeno , Simulación del Acoplamiento Molecular , Lipopolisacáridos , Colitis/inducido químicamente , Citocinas/metabolismo , Hipoxia
12.
Chem Biol Drug Des ; 103(1): e14363, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793997

RESUMEN

Hepatocellular carcinoma (HCC) is a life-threatening disease for which there is no cure. Traditional Chinese medicine is a treasure trove of Medicinals that has been used for thousands of years. In China, the traditional herb pair, Curcumae Rhizoma and Sparganii Rhizoma (CR-SR) represent a classic herbal combination used for the treatment of HCC. However, the drug targets and pharmacological mechanism of action of CR-SR in the treatment of HCC are unclear. To address this, we screened the active components and drug targets of CR-SR from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and a high-throughput experiment- and reference-guided database of traditional Chinese medicines (HERB database). Combined with the weighted co-expression network analysis of dataset GSE76427, we constructed an active component-target-disease regulatory network. It was found that CR-SR's active components for HCC treatment included trans-gondoic acid, beta-sitosterol, stigmasterol, hederagenin, and formononetin. These compounds specifically targeted the genes Estrogen Receptor 1 (ESR1), Cyclin A2 (CCNA2), Checkpoint Kinase 1 (CHEK1), and Nuclear Receptor Coactivator 2 (NCOA2). ESR1, CCNA2, and CHEK1 genes showed significant differences in survival prognosis, expression levels, and statistical significance during the pathological stage. Moreover, their high affinity for formononetin was determined through molecular docking analysis. Cell assays and high-throughput sequencing were performed to reveal that the inhibitory effect of formononetin on HepG2 cell proliferation was related to hepatocyte metabolism and cell cycle regulation-related pathways. This study provides insights into potential HCC treatments.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Isoflavonas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Farmacología en Red , Simulación del Acoplamiento Molecular , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
13.
J Ethnopharmacol ; 322: 117576, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104880

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Type 1 diabetes mellitus (T1DM) results from insulin deficiency due to the destruction of pancreatic ß-cells. Previously, our studies showed that inhibition of Keap1/Nrf2 signaling pathway promoted the onset of T1DM, which suggests that finding drugs that can activate the Keap1/Nrf2 signaling may be a promising therapeutic strategy for the T1DM treatment. Astragalus membranaceus (Fisch.) Bunge is a common traditional Chinese medicine that has been frequently applied in Chinese clinics for the treatment of diabetes and other diseases. Formononetin (FMNT), one of the major isoflavonoid constituents isolated from this herbal medicine, possesses diverse pharmacological benefits and T1DM therapeutic potential. However, the exact molecular mechanisms underlying the action of FMNT in ameliorating T1DM have yet to be fully elucidated. AIMS OF THE STUDY: This study is to investigate the regulation of FMNT on the Keap1/Nrf2 signaling pathway to ameliorate T1DM based on network pharmacology approach combined with experimental validation. MATERIALS AND METHODS: A mouse-derived pancreatic islet ß-cell line (MIN6) was used for the in vitro studies. An alloxan (ALX)-induced T1DM model in wild-type and Nrf2 knockout (Nrf2-/-) C57BL/6J mice were established for the in vivo experiments. The protective effects of FMNT against ALX-stimulated MIN6 cell injury were evaluated using MTT, EdU, apoptosis and comet assays. The levels of blood glucose in mice were measured by using a blood monitor and test strips. The protein expression was detected by Western blot analysis. Furthermore, the binding affinity of FMNT to Keap1 was evaluated using cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, and solvent-induced protein precipitation (SIP) assay. The interaction pattern between FMNT and Keap1 was assessed by molecular docking and molecular dynamics simulation techniques. RESULTS: Network pharmacology analysis revealed that FMNT exerted its therapeutic effect against T1DM by mainly regulating oxidative stress response-associated signaling molecules and pathways, such as Nrf2 regulating anti-oxidant/detoxification enzymes and Keap1-Nrf2 signaling pathway. The in vivo results showed that FMNT significantly deceased the ALX-induced high blood glucose levels and conversely increased the ALX-induced low insulin contents. In vitro, FMNT markedly protected MIN6 cells from ALX-induced cytotoxicity, proliferation inhibition and DNA damage and reduced the ALX-stimulated cell apoptosis. FMNT also inhibited ALX-induced overproduction of intracellular ROS to alleviate oxidative stress. In addition, FMNT could bind to Keap1 to notably activate the Keap1/Nrf2 signaling to upregulate Nrf2 expression and promote the Nrf2 translocation from the cytoplasm to the nucleus, resulting in enhancing the expression of antioxidant proteins HO-1 and NQO1. Inhibition of Keap1/Nrf2 signaling by ALX was also markedly abolished in the cells and mice exposed to FMNT. Moreover, these effects of FMNT in ameliorating T1DM were not observed in Nrf2-/- mice. CONCLUSIONS: This study demonstrates that FMNT could bind to Keap1 to activate the Keap1/Nrf2 signaling to prevent intracellular ROS overproduction, thereby attenuating ALX-induced MIN6 cell injury and ameliorating ALX-stimulated T1DM. Results from this study might provide evidence and new insight into the therapeutic effect of FMNT and indicate that FMNT is a promising candidate agent for the treatment of T1DM in clinics.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Isoflavonas , Ratones , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Astragalus propinquus , Glucemia , Simulación del Acoplamiento Molecular , Farmacología en Red , Ratones Endogámicos C57BL , Estrés Oxidativo , Transducción de Señal , Insulinas/metabolismo , Insulinas/farmacología
14.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5822-5829, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114178

RESUMEN

Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1ß, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.


Asunto(s)
Diabetes Mellitus , Fármacos Neuroprotectores , Ratas , Animales , Depresión/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedades Neuroinflamatorias , Receptores de Glutamato , Receptor 1 de Quimiocinas CX3C/genética
15.
J Tradit Complement Med ; 13(6): 600-610, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020551

RESUMEN

Background and aim: The purpose of this study is to explore whether the Xiaozheng pill (XZP) has the effect of anti-hyperplasia of mammary glands (HMG) and to identify the related signaling pathways. Experimental procedure: We analyzed the effective chemical components of the XZP, as well as the key chemical components, key proteins, main biological processes, and pathways in the treatment of HMG; Secondly, the levels of Estradiol (E2), Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), Progesterone (P), Raf/ERK/ELK and HIF-1α/bFGF pathways related proteins were detected; Finally, the effect of XZP on metabolites was analyzed by metabolomics. Results and conclusion: In this study, we identified key targets and pathways for XZP therapy of HMG, including EGFR, VEGFA, ER, and Ras signaling pathways. Animal experiments show that XZP can reduce the levels of E2, LH, and FSH and increase the expression of P in HMG mice. XZP can restore the normal structure of breast tissue and reduce ERα, ERß, and PR expression in breast tissue. In addition, metabolomics results show that XZP also regulates HMG metabolites, including HIF-1α and metabolic pathways. The Western blot results showed that XZP intervention can reduce the protein expression of p-Raf1, Raf1, p-ERK1/2, ERK1/2, ELK, HIF-1α, and bFGF in the breast tissue of HMG mice. XZP may eliminate abnormal breast hyperplasia through inhibition of apoptosis and angiogenesis, which may be linked with the regulation of the Raf/ERK/ELK and HIF-1α/bFGF signaling pathways in HMG mice. These results suggest that XZP treatment may be beneficial for the management of HMG.

16.
BMJ Open ; 13(10): e068850, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907300

RESUMEN

BACKGROUND: Due to the COVID-19 epidemic, Chinese hospitals are forced to impose stringent regulations, which unavoidably affect patients with stroke who need continued rehabilitation and long-term disease treatment. However, there is a lack of qualitative studies in the literature on female relative caregivers of hospitalised patients who had a stroke with dysphagia during the COVID-19 pandemic. OBJECTIVE: In this study, we aimed to explore the experiences of female Chinese caregivers living in the hospital with patients with post-stroke dysphagia during the pandemic. DESIGN: We conducted a qualitative study using semi-structured interviews. SETTINGS: From May 2022 to July 2022, patients were selected from the Acupuncture and Moxibustion Ward and the Encephalopathy Ward of Shenzhen Chinese Medicine Hospital, which receives patients from across the country. PARTICIPANTS: 10 Chinese women who were caregivers of patients with post-stroke dysphagia were finally interviewed. METHODS: Interviews were transcribed verbatim and analysed using Colaizzi's approach. RESULTS: The primary theme was determined to be 'kidnapped' lives. Other sub-themes evolved to depict the lives of female relative caregivers, including inevitable tasks and challenges, precise care, a special dietary pattern, solitary and forgotten, and an elusive future. Due to the trivial nature of caring for patients who had a stroke with dysphagia, the caregivers' lives were tightly organised and entirely dictated by the patient's caring needs. Consequently, the caregivers felt that their lives had been kidnapped. CONCLUSIONS: It is imperative that healthcare workers identify and understand the living conditions of female relative caregivers in the hospital, so as to determine their difficulties and needs. Finally, caregivers deserve adequate and effective support, such as technical support, financial support and nutritional guidance.


Asunto(s)
COVID-19 , Trastornos de Deglución , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Femenino , Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Pandemias , Accidente Cerebrovascular/complicaciones , Cuidadores , Investigación Cualitativa , China
17.
Toxicology ; 499: 153653, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37863467

RESUMEN

There is an increasing evidence suggesting that myo-inositol (MI) may be a renoprotective factor. Our previous study revealed that decreased MI concentrations and increased excretion are often observed in animal models of renal injury and in patients with nephropathy. However, the role of MI supplementation in renal injury remains unclear. In this study, we aimed to explore the role of MI in cisplatin-induced acute kidney injury (AKI). We established a model of acute kidney injury caused by cisplatin (CDDP). Male Kunming mice were randomly divided into six groups: Sham (normal saline), CDDP (15 mg/kg), + MI (150 mg/kg), + MI (300 mg/kg), + MI (600 mg/kg) and MI (600 mg/kg). Human renal tubular epithelial cell line HK-2 cells were likewise separated into six groups at random: Control (normal saline), CDDP (20 µM), + MI (200 µM), + MI (400 µM), + MI (800 µM) and MI (800 µM). After the model was established, renal function indexes were subsequently detected, and experiments such as pathological staining analysis and protein expression analysis were performed. Our results showed that cisplatin administration led to AKI and apoptosis in mice and HK-2 cells, accompanied by markedly increased levels of MIOX, kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), whereas exogenous MI significantly attenuated kidney injury and HK-2 cell damage induced by cisplatin both in vivo and in vitro by inhibiting excessive apoptosis. Overall, our findings demonstrate that exogenous MI can reduce excessive apoptosis, thus playing a protective role in cisplatin-induced AKI, indicating that exogenous MI may be used as an adjunctive treatment modality in cisplatin-induced AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Humanos , Masculino , Animales , Cisplatino/toxicidad , Solución Salina/toxicidad , Solución Salina/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Riñón , Apoptosis
18.
Am J Chin Med ; 51(6): 1477-1499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37530508

RESUMEN

Rosa roxburghii Tratt is a traditional Chinese plant that has been used to treat different inflammatory diseases. The purpose of this study was to investigate the mechanism of action of Rosa roxburghii Tratt extract (RRTE) against ulcerative colitis (UC) using network pharmacology and experimental validation. HPLC-Q/Orbitrap MS was used to rapidly identify the substances contained in RRTE after extracting the active components from the fruit. Then, network pharmacology combined with molecular docking was used to explore the critical target and potential mechanism of RRTE against UC using the active ingredients in RRTE as the research object. Data are presented in a visual manner. Finally, the pharmacological effects of RRTE in alleviating UC were further verified using a DSS-induced UC model of NCM460. The results showed that 25 components in RRTE were identified. A total of 250 targets of the active components and 5376 targets associated with UC were collected. Furthermore, a systematic analysis of the Protein-Protein Interaction (PPI) networks suggests that epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), and serine/threonine kinase 1 (AKT1) are critical targets for RRTE in the treatment of UC. A comprehensive regulatory network analysis showed that RRTE alleviated UC through the EGFR-mediated PI3K/Akt pathway, and molecular docking showed that active components could strongly bind to EGFR, PIK3R1, and AKT1. In addition, RRTE alleviated dextran sulfate sodium salt (DSS)-induced cell injury and significantly decreased the protein expression levels of EGFR, PIK3R1, and p-AKT in NCM460 cells in vitro. Furthermore, RRTE significantly regulated the expression of the apoptosis-related proteins Apoptotic protease-activating factor 1 (Apaf1), cleaved caspase-3, B-cell lymphoma-2 (Bcl2), and Bcl2 associated X protein (Bax). In conclusion, the components of RRTE are complex, and RRTE can relieve UC through the EGFR-mediated PI3K/Akt pathway.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Rosa , Farmacología en Red , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Receptores ErbB , Medicamentos Herbarios Chinos/farmacología
19.
Adv Sci (Weinh) ; 10(27): e2301190, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37469018

RESUMEN

RNA-binding proteins (RBPs) play essential roles in tumorigenesis and progression, but their functions in gastric cancer (GC) remain largely elusive. Here, it is reported that Pumilio 1 (PUM1), an RBP, induces metabolic reprogramming through post-transcriptional regulation of DEP domain-containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR) in GC. In clinical samples, elevated expression of PUM1 is associated with recurrence, metastasis, and poor survival. In vitro and in vivo experiments demonstrate that knockdown of PUM1 inhibits the proliferation and metastasis of GC cells. In addition, RNA-sequencing and bioinformatics analyses show that PUM1 is enriched in the glycolysis gene signature. Metabolomics studies confirm that PUM1 deficiency suppresses glycolytic metabolism. Mechanistically, PUM1 binds directly to DEPTOR mRNA pumilio response element to maintain the stability of the transcript and prevent DEPTOR degradation through post-transcriptional pathway. PUM1-mediated DEPTOR upregulation inhibits mTORC1 and alleviates the inhibitory feedback signal transmitted from mTORC1 to PI3K under normal conditions, thus activating the PI3K-Akt signal and glycolysis continuously. Collectively, these results reveal the critical epigenetic role of PUM1 in modulating DEPTOR-dependent GC progression. These conclusions support further clinical investigation of PUM1 inhibitors as a metabolic-targeting treatment strategy for GC.


Asunto(s)
Transducción de Señal , Neoplasias Gástricas , Humanos , Fosfatidilinositol 3-Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
20.
Children (Basel) ; 10(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37371159

RESUMEN

Hyperbilirubinemia is a common pathological condition in neonates. Free bilirubin can penetrate the blood-brain barrier (BBB), which can lead to bilirubin neurotoxicity. In the context of predicting the risk of bilirubin neurotoxicity, although the specificity and sensitivity of free bilirubin levels are higher than those of total serum bilirubin (TSB), free bilirubin is not widely monitored in clinical practice. The threshold TSB levels at which phototherapy must be administered have been established previously. However, TSB levels are not well correlated with neurodevelopmental outcomes. Currently, TSB levels are commonly used to guide phototherapy for neonatal hyperbilirubinemia. Some clinical drugs can displace bilirubin from its albumin-binding sites, and consequently upregulate plasma bilirubin. Daily dosages play a vital role in regulating bilirubin levels. A drug with both a high protein binding capacity and high daily dosage significantly increases bilirubin levels in infants. Premature or very low birth weight (VLBW) infants are vulnerable to the upregulation of bilirubin levels as they exhibit the lowest reserve albumin levels and consequently the highest bilirubin toxicity index. Because bilirubin is involved in maintaining the balance between pro-oxidant and antioxidant agents, the downregulation of bilirubin levels is not always desirable. This review provides insights into the impact of protein binding capacity and daily dosage of drugs on the bilirubin levels in susceptible infants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA