Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Children (Basel) ; 10(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37371159

RESUMEN

Hyperbilirubinemia is a common pathological condition in neonates. Free bilirubin can penetrate the blood-brain barrier (BBB), which can lead to bilirubin neurotoxicity. In the context of predicting the risk of bilirubin neurotoxicity, although the specificity and sensitivity of free bilirubin levels are higher than those of total serum bilirubin (TSB), free bilirubin is not widely monitored in clinical practice. The threshold TSB levels at which phototherapy must be administered have been established previously. However, TSB levels are not well correlated with neurodevelopmental outcomes. Currently, TSB levels are commonly used to guide phototherapy for neonatal hyperbilirubinemia. Some clinical drugs can displace bilirubin from its albumin-binding sites, and consequently upregulate plasma bilirubin. Daily dosages play a vital role in regulating bilirubin levels. A drug with both a high protein binding capacity and high daily dosage significantly increases bilirubin levels in infants. Premature or very low birth weight (VLBW) infants are vulnerable to the upregulation of bilirubin levels as they exhibit the lowest reserve albumin levels and consequently the highest bilirubin toxicity index. Because bilirubin is involved in maintaining the balance between pro-oxidant and antioxidant agents, the downregulation of bilirubin levels is not always desirable. This review provides insights into the impact of protein binding capacity and daily dosage of drugs on the bilirubin levels in susceptible infants.

2.
Children (Basel) ; 9(8)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-36010074

RESUMEN

Backgrounds: Drugs with the ability to displace bilirubin from albumin-binding sites subsequently leading to an increased bilirubin level may cause hyperbilirubinemia in neonates. Ibuprofen is commonly used to treat patent ductus arteriosus (PDA) in neonates, yet the use of ibuprofen has drawn mixed conclusions. We performed a retrospective study to determine how ibuprofen use influences the total serum bilirubin (TSB) level in neonates of differing birth weight (BW). Materials and methods: Neonates (including premature infants) born at Chang Gung Memorial Hospital, Taiwan during January 2004 to July 2020 were entered into this study. We recorded the phototherapy duration, including the initial day and end day, and determined the average influence of one-day phototherapy on TSB level. The highest monitored TSB level post-ibuprofen use minus the one measured prior to ibuprofen use was considered the TSB change following ibuprofen administration in this study, and the above-mentioned influence of daily phototherapy on the TSB level was used to correlate the results. Neonates with any of the following conditions were excluded: those who received ceftriaxone, those with intraventricular hemorrhage, and those infected with TORCH. Results: The average daily influence of phototherapy on the TSB level of neonates was −0.20 (−0.57~0.05) mg/dL, −0.28 (−0.84~0.13) mg/dL, −0.75 (−1.77~0.10) mg/dL, and −1.60 (−2.70~−0.50) mg/dL in neonates with BWs of <1 kg, 1−1.49 kg, 1.5−2.49 kg, and ≥2.5 kg, respectively, indicating that neonates with a BW ≥ 1.5 kg experienced a greater reduction in TSB level following phototherapy as compared with those with a BW < 1.5 kg. The average TSB increase following ibuprofen use in neonates was 3.38 ± 2.77 mg/dL, 2.04 ± 2.53 mg/dL, and 1.34 ± 2.24 mg/dL in neonates with BWs of <1 kg, 1−1.49 kg, and ≥1.5 kg, respectively, i.e., an elevated TSB change with a decreased neonate BW was noted post-ibuprofen use (p = 0.026, one-way analysis of variance (ANOVA)). Conclusions: As ibuprofen use is correlated with an apparent increase in TSB level in neonates with a lower BW, especially in those with a BW < 1 kg, iv acetaminophen can be an appropriate alternative to ibuprofen for ELBW neonates for the treatment of PDA if they are experiencing severe unconjugated hyperbilirubinemia.

3.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887270

RESUMEN

Emerging evidence supports that hypertension can be programmed or reprogrammed by maternal nutrition. Maternal exposures during pregnancy, such as maternal nutrition or antibiotic use, could alter the offspring's gut microbiota. Short-chain fatty acids (SCFAs) are the major gut microbiota-derived metabolites. Acetate, the most dominant SCFA, has shown its antihypertensive effect. Limited information exists regarding whether maternal acetate supplementation can prevent maternal minocycline-induced hypertension in adult offspring. We exposed pregnant Sprague Dawley rats to normal diet (ND), minocycline (MI, 50 mg/kg/day), magnesium acetate (AC, 200 mmol/L in drinking water), and MI + AC from gestation to lactation period. At 12 weeks of age, four groups (n = 8/group) of male progeny were sacrificed. Maternal acetate supplementation protected adult offspring against minocycline-induced hypertension. Minocycline administration reduced plasma acetic acid level, which maternal acetate supplementation prevented. Additionally, acetate supplementation increased the protein level of SCFA receptor G protein-coupled receptor 41 in the offspring kidneys. Further, minocycline administration and acetate supplementation significantly altered gut microbiota composition. Maternal acetate supplementation protected minocycline-induced hypertension accompanying by the increases in genera Roseburia, Bifidobacterium, and Coprococcus. In sum, our results cast new light on targeting gut microbial metabolites as early interventions to prevent the development of hypertension, which could help alleviate the global burden of hypertension.


Asunto(s)
Hipertensión , Efectos Tardíos de la Exposición Prenatal , Acetatos/farmacología , Animales , Presión Sanguínea , Suplementos Dietéticos , Femenino , Humanos , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Lactancia , Masculino , Exposición Materna/efectos adversos , Minociclina/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal/prevención & control , Ratas , Ratas Sprague-Dawley
4.
Nutrients ; 13(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34444938

RESUMEN

l-Arginine is an important nutrient in the infant diet that significantly regulates the maturation of the immune system in neonates, including the maturation of CD4+ T cells. The biological activities of CD4+ T cells differ substantially between neonates and adults, and these differences may be governed by epigenetic processes. Investigating these differences and the causative processes may help understand neonatal and developmental immunity. In this study, we compared the functional DNA methylation profiles in CD4+ T cells of neonates and adults, focusing on the role of l-arginine supplementation. Umbilical cord blood and adult CD4+ T cells were cultured with/without l-arginine treatment. By comparing DNA methylation in samples without l-arginine treatment, we found that CD4+ T cells of neonatal cord blood generally showed higher DNA methylation than those of adults (average CpG methylation percentage 0.6305 for neonate and 0.6254 for adult, t-test p-value < 0.0001), suggesting gene silencing in neonates. By examining DNA methylation patterns of CpG dinucleotides induced by l-arginine treatment, we found that more CpG dinucleotides were hypomethylated and more genes appeared to be activated in neonatal T-cells as compared with adult. Genes activated by l-arginine stimulation of cord blood samples were more enriched regarding immune-related pathways. CpG dinucleotides at IL-13 promoter regions were hypomethylated after l-arginine stimulation. Hypomethylated CpG dinucleotides corresponded to higher IL-13 gene expression and cytokine production. Thus, DNA methylation partially accounts for the mechanism underlying differential immune function in neonates. Modulatory effects of l-arginine on DNA methylation are gene-specific. Nutritional intervention is a potential strategy to modulate immune function of neonates.


Asunto(s)
Arginina/administración & dosificación , Linfocitos T CD4-Positivos/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Inmunidad/efectos de los fármacos , Adulto , Islas de CpG , Suplementos Dietéticos , Epigénesis Genética , Sangre Fetal/metabolismo , Expresión Génica , Humanos , Inmunidad/genética , Recién Nacido , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Regiones Promotoras Genéticas
5.
Lipids Health Dis ; 19(1): 174, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32711539

RESUMEN

BACKGROUND: Maternal obesity is an emerging problem in the modern world. Growing evidence suggests that intrauterine high-fat (HF) exposure may predispose progeny to subsequent metabolic challenges. Progeny born to mothers who ate an HF diet also tends to eat an HF diet when growing and aggravate metabolic issues. Thus, the generational transmission of obesity is cyclical. Developing a strategy to prevent the occurrence of metabolic syndrome related to prenatal and/or postnatal HF diet is important. In this study, the reprogramming effects of maternal resveratrol treatment for the progeny with maternal HF/postnatal HF diets were investigated. METHODS: Sprague-Dawley dams were fed either a control or a high-fat/high sucrose diet (HFHS) from mating to lactation. After weaning, the progeny was fed chow or an HF diet. Four experimental groups were yielded: CC (maternal/postnatal control diet), HC (maternal HF/postnatal control diet), CH (maternal control/postnatal HFHS diet), and HH (maternal/postnatal HFHS diet). A fifth group (HRH) received a maternal HFHS diet plus maternal resveratrol treatment and a postnatal chow diet to study the effects of maternal resveratrol therapy. RESULTS: Maternal resveratrol treatment lessened the weight and adiposity of progeny that were programmed by combined prenatal and postnatal HFHS diets. Maternal resveratrol therapy ameliorated the decreased abundance of the sirtuin 1 (SIRT1) enzyme in retroperitoneal tissue and the altered leptin/soluble leptin receptor ratio of progeny. Maternal resveratrol therapy also decreased lipogenesis and increased lipolysis for progeny. CONCLUSIONS: Maternal resveratrol intervention can prevent adiposity programmed by maternal and postnatal HFHS diets by inducing lipid metabolic modulation. This study offers a novel reprogramming role for the effect of maternal resveratrol supplements against obesity.


Asunto(s)
Adiposidad/efectos de los fármacos , Resveratrol/farmacología , Análisis de Varianza , Animales , Western Blotting , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Femenino , Lactancia/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Masculino , Obesidad/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sirtuina 1/metabolismo
6.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604820

RESUMEN

Hypertension and chronic kidney disease (CKD) can originate during early-life. Tryptophan metabolites generated by different pathways have both detrimental and beneficial effects. In CKD, uremic toxins from the tryptophan-generating metabolites are endogenous ligands of the aryl hydrocarbon receptor (AHR). The interplay between AHR, nitric oxide (NO), the renin-angiotensin system (RAS), and gut microbiota is involved in the development of hypertension. We examined whether tryptophan supplementation in pregnancy can prevent hypertension and kidney disease programmed by maternal CKD in adult offspring via the aforementioned mechanisms. Sprague-Dawley (SD) female rats received regular chow or chow supplemented with 0.5% adenine for 3 weeks to induce CKD before pregnancy. Pregnant controls or CKD rats received vehicle or tryptophan 200 mg/kg per day via oral gavage during pregnancy. Male offspring were divided into four groups (n = 8/group): control, CKD, tryptophan supplementation (Trp), and CKD plus tryptophan supplementation (CKDTrp). All rats were sacrificed at the age of 12 weeks. We found maternal CKD induced hypertension in adult offspring, which tryptophan supplementation prevented. Maternal CKD-induced hypertension is related to impaired NO bioavailability and non-classical RAS axis. Maternal CKD and tryptophan supplementation differentially shaped distinct gut microbiota profile in adult offspring. The protective effect of tryptophan supplementation against maternal CKD-induced programmed hypertension is relevant to alterations to several tryptophan-metabolizing microbes and AHR signaling pathway. Our findings support interplay among tryptophan-metabolizing microbiome, AHR, NO, and the RAS in hypertension of developmental origins. Furthermore, tryptophan supplementation in pregnancy could be a potential approach to prevent hypertension programmed by maternal CKD.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión/prevención & control , Efectos Tardíos de la Exposición Prenatal/prevención & control , Receptores de Hidrocarburo de Aril/metabolismo , Insuficiencia Renal Crónica/complicaciones , Triptófano/administración & dosificación , Triptófano/metabolismo , Animales , Antidepresivos de Segunda Generación/administración & dosificación , Antidepresivos de Segunda Generación/metabolismo , Suplementos Dietéticos , Femenino , Hipertensión/etiología , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Exposición Materna , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/metabolismo , Ratas , Ratas Sprague-Dawley
7.
J Nutr Biochem ; 70: 28-37, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31108332

RESUMEN

Oxidative stress, nutrient-sensing signals, high-fat (HF) intake and dysbiosis of gut microbiota are involved in the development of hypertension, a disorder that can originate in early life. We examined whether postnatal HF diet can aggravate maternal NG-nitro-L-arginine-methyl ester (L-NAME) treatment-induced programmed hypertension and whether resveratrol therapy can prevent it. Pregnant Sprague-Dawley rats received L-NAME administration at 60 mg/kg/day subcutaneously during pregnancy alone, or with additional resveratrol (R) 50 mg/L in drinking water during the pregnancy and lactation. The offspring were onto either regular chow or HF diet (D12331) from weaning to 16 weeks of age. Male offspring rats were assigned to five groups (N=8/group): control, L-NAME, HF, L-NAME+HF and L-NAME+HF + R at weaning at 3 weeks of age. Rats were sacrificed at 16 weeks of age. We observed that postnatal HF diet exacerbates maternal L-NAME treatment-induced programmed hypertension in male adult offspring, which resveratrol attenuated. Combined L-LAME and HF diet-induced hypertension is related to increased oxidative stress, inhibiting AMP-activated protein kinase (AMPK)/ peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) pathway and altered gut microbiota compositions. L-NAME+HF caused an increase of the Firmicutes to Bacteroidetes ratio, which resveratrol therapy prevented. Additionally, the abundances of phylum Verrucomicrobia and genus Akkermansia were amplified by resveratrol therapy. Conclusively, our data highlighted the interactions between maternal NO deficiency, HF diet, AMPK/PGC-1α pathway and gut microbiota in which the blood pressure of adult offspring can be modified by resveratrol. Resveratrol might be a useful reprogramming strategy to prevent L-NAME and HF diet-induced hypertension of developmental origin.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión/prevención & control , NG-Nitroarginina Metil Éster/administración & dosificación , Estrés Oxidativo , Resveratrol/administración & dosificación , Animales , Dieta Alta en Grasa , Análisis Discriminante , Inhibidores Enzimáticos/administración & dosificación , Femenino , Exposición Materna , Óxido Nítrico/metabolismo , Nutrientes , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Front Immunol ; 9: 2911, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619275

RESUMEN

Arginine is a semiessential amino acid in healthy adult human, but is essential for preterm, newborn or critically ill patients. Arginine can be supplied from our diet or de novo synthesis from citrulline. In conditions of sepsis or endotoxemia, arginine may be deficient and be accompanied with altered immune response. L-arginine supplementation can ameliorate dysregulated immune condition and improve prognosis. Many studies had tried L-arginine or L-citrulline supplementation to examine the effect on immune response in the adult population. Few had studied on the young children. In this study, we determined the effect of L-arginine and L-citrulline supplementation on the immune response of infantile rats. Male infantile rats received normal saline, L-arginine (200 mg/kg/day) or L-citrulline (200 mg/kg/day) intraperitoneally over postnatal day 8 to day 14. The infantile rats were then sacrificed. The blood was analyzed while the spleen was indicated for immune analysis after stimulation with concanavalin A (Con A) or lipopolysaccharide (LPS). We found L-arginine supplementation enhanced Th1 immune response by increasing IFN-γ production. Both the L-arginine and L-citrulline therapy can modulate regulatory T-cell (Treg) immune effects by increasing the IL-10 level. Only the L-citrulline group showed a TGF-ß1 increase. Both L-arginine and L-citrulline therapy were also noted to decrease SMAD7 expression and enhance SIRT-1 abundance. However, FOXP3 expression was only modulated by L-citrulline treatment. We then concluded that L-arginine and L-citrulline supplementation can modulate the regulatory T-cells function differently for infantile rats.


Asunto(s)
Arginina/administración & dosificación , Citrulina/administración & dosificación , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Animales , Animales Recién Nacidos/inmunología , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/inmunología , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Masculino , Modelos Animales , Ratas , Ratas Sprague-Dawley , Proteína smad7/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/metabolismo
9.
Front Immunol ; 8: 487, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28487700

RESUMEN

A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL)-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs) function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs) produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs) by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-ß production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA