Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sep Sci ; 47(1): e2300597, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38095454

RESUMEN

Using high-performance liquid chromatography coupled with electrospray ionization-ion mobility spectrometry and mass spectrometry, we proposed a dual-detection method for the identification and profiling of alkaloids in various lotus parts including leaf, plumule, stem, seed epicarp, and receptacle. The eluent from high-performance liquid chromatography was split and conducted to electrospray ionization-ion mobility spectrometry and time-of-flight mass spectrometry separately to facilitate the compound identification. In total, 23 kinds of alkaloids were identified based on m/z, drift time, and retention time, including alkaloid isomers such as lirinidine, N-nornuciferine, and O-nornuciferine with identical m/z that are difficult to differentiate using mass spectrometry alone. Using this method, we investigated the changing dynamics of alkaloid accumulation in lotus leaves and lotus stems at different harvesting periods. The total alkaloid content showed an increasing trend with the growth and development of leave and stem. Overall, the developed dual detection method has the advantages of high peak capacity and high sensitivity compared with the conventional detection method and facilitates the identification of detected compounds.


Asunto(s)
Alcaloides , Extractos Vegetales , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Espectrometría de Movilidad Iónica , Alcaloides/análisis , Espectrometría de Masas/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos
2.
J Chromatogr A ; 1714: 464560, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38070304

RESUMEN

The Fourier deconvolution ion mobility spectrometer (FDIMS) offers multiplexing and improves the resolving power and signal-to-noise ratio. To evaluate the FDIMS as a detector for gas chromatography for the analysis of complex samples, we connected a drift tube ion mobility spectrometer to a commercial gas chromatograph and compared the performance including resolving power, sensitivity, and linear range using 2,6-di­tert-butylpyridine. Mixed standards were also injected into the tandem system to evaluate the performance under optimized conditions. A complex plant extract sample used as natural flavoring was investigated using the resulting system. The results show that the instrument implemented with the Fourier deconvolution multiplexing method demonstrated higher performance over the traditional signal averaging method including higher resolving power, better limit of detection, and wider linear range for a variety of compounds and natural plant extract flavorings.


Asunto(s)
Extractos Vegetales , Cromatografía de Gases/métodos
3.
J Sep Sci ; 45(24): 4469-4477, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36250424

RESUMEN

Areca nut is a popular and addictive food as well as a traditional herbal medicine in many countries. Areca nut contains alkaloids including arecoline, guvacine, and arecaidine, which are the major bioactive compounds in areca products. Areca alkaloids can be carcinogenic, and thus sensitive and specific analytical methods are urgently desired for the identification and quantification of these compounds. High-performance liquid chromatography-based methods are often preferred, but areca alkaloids do not have chromophores, and detection using a traditional UV detector can be difficult. The complexity of areca sample extracts can also lead to the co-elution of peaks leading to poor quantitative performance. We report here high-performance liquid chromatography coupled with an ion mobility spectrometer for sensitive determination of areca alkaloids in various products including areca nut, areca nut products, and herbal oral liquid. An X-Bridge reversed-phase C18 column was used in the experiment and was combined with high-performance liquid chromatography coupled to an ion mobility spectrometer system. A custom-made adjustable post-column splitter acted as an interface between the high-performance liquid chromatography and the ion mobility spectrometer; it also acted as the electrospray ionization source. The mobile phase was methanol and 0.5% ammonium hydroxide. The results demonstrate that the splitter can afford a wide range of split ratios that match the ion mobility spectrometer ionization source while keeping the separation efficiency of high-performance liquid chromatography. Three major alkaloid compounds were then accurately determined using the resulting method without dativization steps. Many coeluted high-performance liquid chromatography peaks are effectively separated in the ion mobility spectrometer dimension, which in turn improved the quantification accuracy.


Asunto(s)
Alcaloides , Areca , Areca/química , Cromatografía Líquida de Alta Presión , Espectrometría de Movilidad Iónica , Nueces/química , Alcaloides/análisis
4.
Phytochem Anal ; 32(6): 1003-1010, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33751700

RESUMEN

INTRODUCTION: Ambient pressure electrospray ionisation ion mobility spectrometry coupled to high-performance liquid chromatography (HPLC) was used to detect alkaloids from different parts of Sophora alopecuroides L. extracts. Multiplexing ion mobility spectrometry (IMS) was used to improve the signal-to-noise ratio while maintaining high resolving power for the detecting of eluents from HPLC separation. MATERIAL AND METHODS: The alkaloids profile and distribution are demonstrated by retention time-drift time two-dimensional spaces, and the contents of five major alkaloids including sophoridine, sophocarpine, cytisine, aloperine, and matrine were determined in the leaf, skin, stem, seed kernel, and seed husk using the HPLC-IMS method. This method offers extra separation ability to isomers such as matrine and sophocarpine, which can be difficult to distinguish by mass spectrometry. RESULTS: The reduced mobilities for cytisine, sophoridine, sophocarpine, matrine, and aloperine are 0.828, 0.718, 0.731, 0.725, and 0.769 cm2 /V/s, respectively. The limits of detection are 0.553, 0.488, 0.479, 0.484, and 0.513 ug/mL. This method adds extra separation ability to HPLC to resolve co-eluted peaks and provides another qualitative parameter besides HPLC retention time.


Asunto(s)
Alcaloides , Sophora , Cromatografía Líquida de Alta Presión , Espectrometría de Movilidad Iónica , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA