Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Chromatogr ; 36(11): e5475, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35947036

RESUMEN

This study established the fingerprint of Syringa pinnatifolia Hemsl. (SP), analyzed the SP ingredients absorbed into the rats blood, and evaluated its anti-myocardial ischemic effect to provide a scientific basis for the follow-up development and research of SP and lay a foundation for its clinical application using ultra-performance liquid chromatography-Q Exactive-mass spectrometry and GC-MS. Myocardial infarction was induced in rat by ligating the left anterior descending branch of the rat coronary artery, and SP alcohol extract was administered to evaluate its anti-myocardial ischemic effect. We analyzed the SP ingredients absorbed into the rats blood, screened the active compounds, established a database of SP anti-myocardial ischemic targets, and explored the possible mechanism of SP in treating myocardial infarction using bioinformatics. The rats were examined using echocardiography, serum biomarkers were determined, and pathological changes were observed by histopathological examination. TUNEL staining was performed to detect the apoptotic level of cells, and Western blot and quantitative real-time polymerase chain reaction were performed to detect the expression levels of Bcl-2, Bax, and Caspase-3 in heart tissues. In the fingerprint of SP, 24 common peaks were established, and the similarity evaluation results of 10 batches of SP were all >0.9. Ultra-performance liquid chromatography-Q Exactive-mass spectrometry and GC-MS detected 17 active ingredients in the drug-containing serum, including terpenoids, flavonoids, phenols, phenylpropanoids, and phenolic acids, the most abundant of which was resveratrol. Enrichment analysis of SP targets against myocardial ischemia revealed that key candidate targets of SP were significantly enriched in multiple pathways associated with apoptosis. Resveratrol was administered to the successfully modeled rats, and the results showed that the resveratrol group significantly decreased left ventricular end-diastolic diameter and left ventricular end-systolic diameter and significantly increased ejection fraction and fractional shortening in all groups compared with the model group. Resveratrol significantly decreased the levels of creatine kinase isoenzyme and lactate dehydrogenase in serum compared to the model group (P < 0.001). Hematoxylin-eosin staining of rat myocardial tissue showed that all lesions were reduced under microscopic observation in the resveratrol group compared with the model group. Real-time polymerase chain reaction and Western blot results showed that the resveratrol group downregulated the expression of the proapoptotic factor Bax, upregulated the expression of the antiapoptotic factor Bcl-2, and decreased the expression of Caspase-3. The established fingerprints are accurate, reliable, and reproducible and can be used as an effective method for quality control of the herbs. The anti-myocardial ischemia effect of SP is that resveratrol improves cardiac function and inhibits cardiomyocyte apoptosis to protect cardiomyocytes. The present study provides ample evidence for the clinical use of SP, suggesting that this drug has great potential in the treatment of ischemic heart disease.


Asunto(s)
Infarto del Miocardio , Isquemia Miocárdica , Syringa , Animales , Caspasa 3/metabolismo , Caspasa 3/farmacología , Caspasa 3/uso terapéutico , Creatina Quinasa , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Eosina Amarillenta-(YS)/uso terapéutico , Flavonoides/metabolismo , Hematoxilina/metabolismo , Hematoxilina/farmacología , Hematoxilina/uso terapéutico , Isoenzimas/metabolismo , Isoenzimas/farmacología , Isoenzimas/uso terapéutico , Lactato Deshidrogenasas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Extractos Vegetales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico , Ratas , Resveratrol , Syringa/química , Terpenos/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología
2.
Chin J Nat Med ; 19(6): 412-421, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34092292

RESUMEN

Although the etiology of sciatica remains uncertain, there is increasing evidence that the disease process of sciatica is associated with the levels of inflammatory factors. Piperine, an alkaloid isolated from Piper nigrum, has previously been demonstrated to inhibit inflammation and analgesic effects. The purpose of this study is to verify the regulatory relationship between miR-520a and p65 and to explore how miR-520a/P65 affects the level of cytokines under the action of piperine, so as to play a therapeutic role in sciatica. Through ELISA experiment, we confirmed that four inflammatory factors (IL-1ß, TNF-α, IL-10, TGF-ß1) can be used as evaluation indexes of sciatica. The differentially expressed miRNA was screened as miR-520a, by microarray technology, and the downstream target of miR-520a was P65 by bioinformatics. Real-time fluorescence quantitative PCR confirmed that the expression of miR-520a was negatively correlated with pro-inflammatory cytokines, positively correlated with anti-inflammatory cytokines and negatively correlated with p65 expression at mRNA level. The expression of p65 was positively correlated with pro-inflammatory cytokines and negatively correlated with anti-inflammatory cytokines at the protein level verified by ELISA and Western blot. HE staining analysis showed that the nerve fibers were repaired by piprine, the vacuoles were significantly reduced, and the degree of nerve fiber damage was also improved. Immunohistochemical analysis showed that the expression of p65 decreased after administration of piperine. Dual-luciferase reporter gene assay confirmed that the luciferase signal decreased significantly after cotransfection of miR-520a mimics and p65 3'UTR recombinant plasmid. To sum up, in the rat model of non-compressed lumbar disc herniation, piperine plays a significant role in analgesia. MiR-520a can specifically and directly target P65, and piperine can promote the expression of miR-520a, then inhibit the expression of p65, down-regulate the pro-inflammatory factors IL-1ß and TNF-α, and up-regulate the effects of anti-inflammatory factors IL-10 and TGF-ß1, so as to treat sciatica.


Asunto(s)
Alcaloides/farmacología , Benzodioxoles/farmacología , MicroARNs , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Ciática , Animales , Inflamación/tratamiento farmacológico , Inflamación/genética , MicroARNs/genética , Ratas , Ciática/tratamiento farmacológico , Ciática/genética
3.
Mol Divers ; 25(1): 233-248, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32130644

RESUMEN

Piperine is the main active component of Piper longum L., which is also the main component of anti-sciatica Mongolian medicine Naru Sanwei pill. It has many pharmacological activities such as anti-inflammatory and immune regulation. This paper aims to preliminarily explore the potential mechanism of piperine in the treatment of sciatica through network pharmacology and molecular docking. TCMSP, ETCM database and literature mining were used to collect the active compounds of Piper longum L. Swiss TargetPrediction and SuperPred server were used to find the targets of compounds. At the same time, CTD database was used to collect the targets of sciatica. Then the above targets were compared and analyzed to select the targets of anti-sciatica in Piper longum L. The Go (gene ontology) annotation and KEGG pathway of the targets were enriched and analyzed by Metascape database platform. The molecular docking between the effective components and the targets was verified by Autodock. After that, the sciatica model of rats was established and treated with piperine. The expression level of inflammatory factors and proteins in the serum and tissues of rat sciatic nerve were detected by ELISA and Western blot. HE staining and immunohistochemistry were carried out on the sciatica tissues of rats. The results showed that Piper longum L. can regulate the development of sciatica and affect the expressions of PPARG and NF-kB1 through its active ingredient piperine, and there is endogenous interaction between PPARG and NF-kB1.


Asunto(s)
Alcaloides/farmacología , Benzodioxoles/farmacología , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Ciática/tratamiento farmacológico , Ciática/genética , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Masculino , Simulación del Acoplamiento Molecular/métodos , Piper/química , Ratas , Ratas Sprague-Dawley , Nervio Ciático/efectos de los fármacos , Tecnología/métodos
4.
J Funct Foods ; 71: 104016, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32421102

RESUMEN

OBJECTIVE: This article intends to use molecular docking technology to find potential inhibitors that can respond to COVID-19 from active compounds in Mongolian medicine. METHODS: Mongolian medicine with anti-inflammatory and antiviral effects is selected from Mongolian medicine prescription preparations. TCMSP, ETCM database and document mining methods were used to collect active compounds. Swiss TargetPrediction and SuperPred server were used to find targets of compounds with smiles number. Drugbank and Genecard database were used to collect antiviral drug targets. Then the above targets were compared and analyzed to screen out antiviral targets of Mongolia medicine. Metascape database platform was used to enrich and analyze the GO (Gene ontology) annotation and KEGG pathway of the targets. In view of the high homology of gene sequences between SARS-CoV-2 S-protein RBD domain and SARS virus, as well as their similarities in pathogenesis and clinical manifestations, we established SARS-CoV-2 S-protein model using Swiss-Model. The ZDOCK protein docking software was applied to dock the S-protein with the human angiotensin ACE2 protein to find out the key amino acids of the binding site. Taking ACE2 as the receptor, the molecular docking between the active ingredients and the target protein was studied by AutoDock molecular docking software. The interaction between ligand and receptor is applied to provide a choice for screening anti-COVID-19 drugs. RESULTS: A total of 253 active components were predicted. Metascape analysis showed that key candidate targets were significantly enriched in multiple pathways related to different toxins. These key candidate targets were mainly derived from phillyrin and chlorogenic acid. Through the protein docking between S-protein and ACE2, it is found that Glu329/Gln325 and Gln42/Asp38 in ACE2 play an important role in the binding process of the two. The results of molecular docking virtual calculation showed that phillyrin and chlorogenic acid could stably combine with Gln325 and Gln42/Asp38 in ACE2, respectively, which hindered the combination between S- protein and ACE2. CONCLUSION: Phillyrin and chlorogenic acid can effectively prevent the combination of SARS-CoV-2 S-protein and ACE2 at the molecular level. Phillyrin and chlorogenic acid can be used as potential inhibitors of COVID-19 for further research and development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA