Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166483, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798229

RESUMEN

Excessive alcohol consumption has long been identified as a risk factor for adverse atrial remodeling and atrial fibrillation (AF). Icariin is a principal active component from traditional Chinese medicine Herba Epimedii and has been demonstrated to exert potential antiarrhythmic effect. The present study was designed to evaluate the effect of icariin against alcohol-induced atrial remodeling and disruption of mitochondrial dynamics and furthermore, to elucidate the underlying mechanisms. Excessive alcohol-treated C57BL/6 J mice were infected with serotype 9 adeno-associated virus (AAV9) carrying mouse SIRT3 gene or negative control virus. Meanwhile, icariin (50 mg/kg/d) was administered to the animals in the presence or absence of AAV9 carrying SIRT3 shRNA. We noted that 8 weeks of icariin treatment effectively attenuated alcohol consumption-induced atrial structural and electrical remodeling as evidenced by reduced AF inducibility and reversed atrial electrical conduction pattern as well as atrial enlargement. Furthermore, icariin-treated group exhibited significantly enhanced atrial SIRT3-AMPK signaling, decreased atrial mitoSOX fluorescence and mitochondrial fission markers, elevated mitochondrial fusion markers (MFN1, MFN2) as well as NRF-1-Tfam-mediated mitochondrial biogenesis. Importantly, these beneficial effects were mimicked by SIRT3 overexpression while abolished by SIRT3 knockdown. These data revealed that targeting atrial SIRT3-AMPK signaling and preserving mitochondrial dynamics might serve as the novel therapeutic strategy against alcohol-induced AF genesis. Additionally, icariin ameliorated atrial remodeling and mitochondrial dysfunction by activating SIRT3-AMPK signaling, highlighting the use of icariin as a promising antiarrhythmic agent in this circumstance.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Flavonoides , Sirtuina 3 , Proteínas Quinasas Activadas por AMP/genética , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Fibrilación Atrial/inducido químicamente , Fibrilación Atrial/tratamiento farmacológico , Flavonoides/farmacología , Ratones , Ratones Endogámicos C57BL , Sirtuina 3/genética
2.
Free Radic Biol Med ; 178: 202-214, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864165

RESUMEN

Mitochondrial reactive oxygen species (ROS) damage and atrial remodeling serve as the crucial substrates for the genesis of atrial fibrillation (AF). Branched-chain amino acids (BCAAs) catabolic defect plays critical roles in multiple cardiovascular diseases. However, the alteration of atrial BCAA catabolism and its role in AF remain largely unknown. This study aimed to explore the role of BCAA catabolism in the pathogenesis of AF and to further evaluate the therapeutic effect of melatonin with a focus on protein kinase G (PKG)-cAMP response element binding protein (CREB)-Krüppel-like factor 15 (KLF15) signaling. We found that angiotensin II-treated atria exhibited significantly elevated BCAA level, reduced BCAA catabolic enzyme activity, increased AF vulnerability, aggravated atrial electrical and structural remodeling, and enhanced mitochondrial ROS damage. These deleterious effects were attenuated by melatonin co-administration while exacerbated by BCAA oral supplementation. Melatonin treatment ameliorated BCAA-induced atrial damage and reversed BCAA-induced down-regulation of atrial PKGIα expression, CREB phosphorylation as well as KLF15 expression. However, inhibition of PKG partly abolished melatonin-induced beneficial actions. In summary, these data demonstrated that atrial BCAA catabolic defect contributed to the pathogenesis of AF by aggravating tissue fibrosis and mitochondrial ROS damage. Melatonin treatment ameliorated Ang II-induced atrial structural as well as electrical remodeling by activating PKG-CREB-KLF15. The present study reveals additional mechanisms contributing to AF genesis and highlights the opportunity of a novel therapy for AF by targeting BCAA catabolism. Melatonin may serve as a potential therapeutic agent for AF intervention.


Asunto(s)
Fibrilación Atrial , Melatonina , Aminoácidos de Cadena Ramificada , Angiotensina II , Fibrilación Atrial/inducido químicamente , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Humanos , Factores de Transcripción de Tipo Kruppel , Melatonina/farmacología
3.
Shanghai Kou Qiang Yi Xue ; 30(4): 389-393, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34693432

RESUMEN

PURPOSE: This study investigated the effectiveness of orofacial myofunctional therapy(OMT) in improving facial morphology of children with obstructive sleep apnea (OSA) after adenotonsillectomy (AT). METHODS: Ten children aged from 4-7 years with persistent oral breathing for more than 1 month after adenotonsillectomy were chosen to receive orofacial myofunctional therapy. The patients were required to take photos before and after orofacial myofunctional therapy. In order to compare the soft changes before and after OMT treatment, twelve representative mark points were selected and used for proportion and angle measurements. Graphpad Prism 8 statistical software was used for statistical analysis, to compare the differences in facial morphology of patients before and after treatment. RESULTS: Compared with before OMT, a significant difference was found in the proportion of Sn-Ls/Sn-Stms(P=0.0002), Sn-Stms/Sn-Me'(P<0.05), as well as in the angle of Gs-Sn-Pos (P<0.05), nasolabial angle(P=0.0005), mentolabial angle (P=0.0026) after OMT treatment. CONCLUSIONS: Orofacial myofunctional therapy can be considered as an effective complementary treatment for OSA patients with oral breathing after adenotonsillectomy.


Asunto(s)
Apnea Obstructiva del Sueño , Tonsilectomía , Adenoidectomía , Niño , Cara , Humanos , Terapia Miofuncional , Apnea Obstructiva del Sueño/terapia
4.
Oxid Med Cell Longev ; 2019: 7670854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30728891

RESUMEN

Endoplasmic reticulum (ER) stress and oxidative stress contribute greatly to myocardial ischemia-reperfusion (MI/R) injury. Naringenin, a flavonoid derived from the citrus genus, exerts cardioprotective effects. However, the effects of naringenin on ER stress as well as oxidative stress under MI/R condition and the detailed mechanisms remain poorly defined. This study investigated the protective effect of naringenin on MI/R-injured heart with a focus on cyclic guanosine monophosphate- (cGMP-) dependent protein kinase (PKG) signaling. Sprague-Dawley rats were treated with naringenin (50 mg/kg/d) and subjected to MI/R surgery with or without KT5823 (2 mg/kg, a selective inhibitor of PKG) cotreatment. Cellular experiment was conducted on H9c2 cardiomyoblasts subjected to simulated ischemia-reperfusion treatment. Before the treatment, the cells were incubated with naringenin (80 µmol/L). PKGIα siRNA was employed to inhibit PKG signaling. Our in vivo and in vitro data showed that naringenin effectively improved heart function while it attenuated myocardial apoptosis and infarction. Furthermore, pretreatment with naringenin suppressed MI/R-induced oxidative stress as well as ER stress as evidenced by decreased superoxide generation, myocardial MDA level, gp91 phox expression, and phosphorylation of PERK, IRE1α, and EIF2α as well as reduced ATF6 and CHOP. Importantly, naringenin significantly activated myocardial cGMP-PKGIα signaling while inhibition of PKG signaling with KT5823 (in vivo) or siRNA (in vitro) not only abolished these actions but also blunted naringenin's inhibitory effects against oxidative stress and ER stress. In summary, our study demonstrates that naringenin treatment protects against MI/R injury by reducing oxidative stress and ER stress via cGMP-PKGIα signaling. Its cardioprotective effect deserves further clinical study.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Antagonistas de Estrógenos/uso terapéutico , Flavanonas/uso terapéutico , Daño por Reperfusión Miocárdica/metabolismo , Animales , Antagonistas de Estrógenos/farmacología , Flavanonas/farmacología , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Transfección
5.
Br J Pharmacol ; 175(21): 4137-4153, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30051466

RESUMEN

BACKGROUND AND PURPOSE: Icariin, a major active ingredient in traditional Chinese medicines, is attracting increasing attention because of its unique pharmacological effects against ischaemic heart disease. The histone deacetylase, sirtuin-1, plays a protective role in ischaemia/reperfusion (I/R) injury, and this study was designed to investigate the protective role of icariin in models of cardiac I/R injury and to elucidate the potential involvement of sirtuin-1. EXPERIMENTAL APPROACH: I/R injury was simulated in vivo (mouse hearts), ex vivo (isolated rat hearts) and in vitro (neonatal rat cardiomyocytes and H9c2 cells). Prior to I/R injury, animals or cells were exposed to icariin, with or without inhibitors of sirtuin-1 (sirtinol and SIRT1 siRNA). KEY RESULTS: In vivo and in vitro, icariin given before I/R significantly improved post-I/R heart contraction and limited the infarct size and leakage of creatine kinase-MB and LDH from the damaged myocardium. Icariin also attenuated I/R-induced mitochondrial oxidative damage, decreasing malondialdehyde content and increasing superoxide dismutase activity and expression of Mn-superoxide dismutase. Icariin significantly improved mitochondrial membrane homeostasis by increasing mitochondrial membrane potential and cytochrome C stabilization, which further inhibited cell apoptosis. Sirtuin-1 was significantly up-regulated in hearts treated with icariin, whereas Ac-FOXO1 was simultaneously down-regulated. Importantly, sirtinol and SIRT1 siRNA either blocked icariin-induced cardioprotection or disrupted icariin-mediated mitochondrial homeostasis. CONCLUSIONS AND IMPLICATIONS: Pretreatment with icariin protected cardiomyocytes from I/R-induced oxidative stress through activation of sirtuin-1 /FOXO1 signalling.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Mitocondrias/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Sirtuina 1/antagonistas & inhibidores , Animales , Benzamidas/farmacología , Células Cultivadas , Medicamentos Herbarios Chinos/administración & dosificación , Flavonoides/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Naftoles/farmacología , Estrés Oxidativo/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Sirtuina 1/metabolismo
6.
Acta Pharmacol Sin ; 37(3): 354-67, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26806299

RESUMEN

AIM: Berberine (BBR), an isoquinoline-derived alkaloid isolated from Rhizoma coptidis, exerts cardioprotective effects. Because endoplasmic reticulum (ER) stress plays a pivotal role in myocardial ischemia/reperfusion (MI/R)-induced apoptosis, it was interesting to examine whether the protective effects of BBR resulted from modulating ER stress levels during MI/R injury, and to define the signaling mechanisms in this process. METHODS: Male rats were treated with BBR (200 mg · kg(-1) · d(-1), ig) for 2 weeks, and then subjected to MI/R surgery. Cardiac dimensions and function were assessed using echocardiography. Myocardial infarct size and apoptosis was examined. Total serum LDH levels and CK activities, superoxide production, MDA levels and the antioxidant SOD activities in heart tissue were determined. An in vitro study was performed on cultured rat embryonic myocardium-derived cells H9C2 exposed to simulated ischemia/reperfusion (SIR). The expression of apoptotic, ER stress-related and signaling proteins were assessed using Western blot analyses. RESULTS: Pretreatment with BBR significantly reduced MI/R-induced myocardial infarct size, improved cardiac function, and suppressed myocardial apoptosis and oxidative damage. Furthermore, pretreatment with BBR suppressed MI/R-induced ER stress, evidenced by down-regulating the phosphorylation levels of myocardial PERK and eIF2α and the expression of ATF4 and CHOP in heart tissues. Pretreatment with BBR also activated the JAK2/STAT3 signaling pathway in heart tissues, and co-treatment with AG490, a specific JAK2/STAT3 inhibitor, blocked not only the protective effects of BBR, but also the inhibition of BBR on MI/R-induced ER stress. In H9C2 cells, treatment with BBR (50 µmol/L) markedly reduced SIR-induced cell apoptosis, oxidative stress and ER stress, which were abolished by transfection with JAK2 siRNA. CONCLUSION: BBR ameliorates MI/R injury in rats by activating the AK2/STAT3 signaling pathway and attenuating ER stress-induced apoptosis.


Asunto(s)
Berberina/uso terapéutico , Cardiotónicos/uso terapéutico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Janus Quinasa 2/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Factor de Transcripción STAT3/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
7.
Zhonghua Er Bi Yan Hou Ke Za Zhi ; 39(8): 483-5, 2004 Aug.
Artículo en Chino | MEDLINE | ID: mdl-15563084

RESUMEN

OBJECTIVE: Vestibular evoked myogenic potential (VEMP) has been utilized in clinic to test the function of saccule. In the present study, 3 stimulus modes were applied to 21 normal adults and intended to draw in a clinical test protocol. METHODS: The normal latency and amplitude of VEMPs of 21 normal subjects were recorded and the ratio of bilateral amplitudes and asymmetry were calculated. RESULTS: The response to binaural clicks were similar to the response of the monaural clicks. The interindividual variation in amplitude were large, but the latency varied little. CONCLUSIONS: VEMPs is a stable myogenic potentials. Monaural and binaural clicks stimulus can be used in clinical practice. The latter is appropriate for normal hearing subjects. Amplitude measurement is probable to evaluate the asymmetry of bilateral saccular function and may reveal saccule lesion.


Asunto(s)
Potenciales Vestibulares Miogénicos Evocados , Nervio Vestibular/fisiología , Estimulación Acústica , Adolescente , Adulto , Electromiografía , Femenino , Humanos , Masculino , Pruebas de Función Vestibular , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA