RESUMEN
PURPOSE: This cross-sectional study aimed to assess the effect of environmental cadmium (Cd) exposure and essential metal imbalance on renal tubular damage and oxidative stress in 979 adults living in a Cd-polluted area near an abandoned copper (Cu) refinery. METHODS: We analyzed urinary Cd concentrations, renal tubular damage and oxidative stress markers, such as beta-2 microglobulin (ß2-MG) and N-acetyl-ß-D-glucosaminidase (NAG) activity and urine malondialdehyde (MDA) levels. The serum copper-to-zinc ratio (CZR) was used as an essential metal imbalance indicator. We divided the subjects into two Cd exposure groups based on the reference level of urinary Cd for renal dysfunction (2 µg/g creatinine). RESULTS: The geometric mean concentration of urinary Cd in all subjects was 2.25 µg/g creatinine. In both low and high Cd exposure groups, urinary Cd levels were positively correlated with urinary NAG activity, but not with serum CZR. After multivariate adjustment, serum CZR was strongly associated with urinary ß2-MG levels in the low Cd exposure group (ß = 1.360, P = 0.019) and was significantly associated with urinary MDA levels, regardless of Cd exposure level. In addition, the risk of renal tubular damage was significantly associated with urinary Cd level, particularly in the lowest or highest CZR tertile groups. CONCLUSIONS: Essential metal imbalance may be a determinant of oxidative stress and renal tubular damage in a chronically Cd-exposed population, and proper zinc supplementation will be effective in preventing adverse health effects due to Cd exposure.
Asunto(s)
Cadmio/efectos adversos , Cobre/sangre , Exposición a Riesgos Ambientales/efectos adversos , Enfermedades Renales/inducido químicamente , Túbulos Renales/efectos de los fármacos , Zinc/sangre , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Enfermedades Renales/sangre , Túbulos Renales/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , República de CoreaRESUMEN
This study evaluated blood lead concentrations in the Korean general population and the correlation between various exposure sources using data from the 2008 Korea National Survey for Environmental Pollutants in the Human Body (National Institute of Environmental Research, Korea). The general and occupational characteristics were gathered from 5136 participants who were 20 years of age and older using a structured questionnaire. Blood lead concentrations were analyzed using an atomic absorption spectrophotometer. Statistical analysis was performed using multiple linear regressions of the log lead concentrations to the independent variables such as age, gender, smoke, herbal medication and drug consumption, drinking water, and living area. Geometric mean (GM) blood lead concentrations in Korean adults were 19.7 µg/l. The blood lead concentrations increased with age; the highest concentrations were found in the 50-69-year age group (p<0.001). Males were higher than in females (p<0.001). Current smokers and drinkers had higher concentrations than nonsmokers (p<0.001) and nondrinkers (p<0.001), respectively. People who took herbal medication and drug consumption were higher than those who did not (p<0.001). Education level was negatively associated with blood lead concentration (p<0.001). People living in or around industrial areas had elevated blood lead concentration (p<0.001). Family income was also negatively associated with lead concentration, but not significantly. For drinking water, the underground water (spring or well water) drinking group had higher concentrations than other types of water drinking groups, but not significantly (p=0.063). The blood lead concentrations by occupation were significant (p<0.034): the highest was in laborer and Agricultural-Fishery-Forestry and the lowest in office workers. In women, blood lead concentrations tended to decrease with increasing delivery times, but not significantly. The blood lead concentration (GM) of the general adult population in Korea has decreased over time from 45.8 µg/l (1999) to 19.7 µg/l (2008). Although it is still higher than in other countries such as the United States and Canada, it is rapidly decreasing. Gender, age, smoking and alcohol drinking status, herbal medication and drug consumption, education level, living area and occupation were significantly related to the blood lead concentrations in Korea.