Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Food Chem ; 344: 128600, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33221101

RESUMEN

The contents of phenolic compounds, especially flavonoids, and antioxidant activity of rice (Oryza sativa, Os) and Chinese wild rice (Zizania latifolia, Zl) harvested in China were compared. Zl possessed significantly higher contents of total phenolics, flavonoids, and proanthocyanidins and exhibited higher antioxidant activity than in the Os Xian group, the Os Geng group, and red rice. The flavonoid contents of Os and Zl were compared using a UHPLC-QqQ-MS-based metabolomics approach. A total of 159 flavonoids were identified, among which 78 showed differential expression (72 up-regulated and six down-regulated in the Zl group). The Kyoto Encyclopaedia of Genes and Genomes annotation and classification indicated that the differentially expressed flavonoids were mainly related to anthocyanin biosynthesis. Moreover, candidate genes for flavonoid biosynthesis in Os and Zl were identified in this study. Compared with non-pigmented and red rice, Zl may be more nutritious and is thus considered a better source of natural antioxidants.


Asunto(s)
Antioxidantes/química , Flavonoides/análisis , Oryza/química , Fenoles/análisis , Extractos Vegetales/química , Poaceae/química , Área Bajo la Curva , China , Cromatografía Líquida de Alta Presión , Análisis Discriminante , Flavonoides/química , Humanos , Análisis de los Mínimos Cuadrados , Metabolómica/métodos , Oryza/metabolismo , Fenoles/química , Poaceae/metabolismo , Análisis de Componente Principal , Curva ROC , Espectrometría de Masas en Tándem
2.
Pharmacol Res ; 137: 34-46, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30243842

RESUMEN

Inflammatory bowel disease (IBD), majorly include Crohn's disease (CD) and ulcerative colitis (UC), is chronic and relapsing inflammatory disorders of the gastrointestinal tract, which treatment options remain limited. Here we examined the therapeutic effects of an isoquinoline alkaloid, Palmatine (Pal), on mice experimental colitis induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Colitis was induced in BALB/c mice by administering 3% DSS in drinking water for 7 days. Pal (50 and 100 mg kg-1) and the positive drug Sulfasalazine (SASP, 200 mg kg-1) were orally administered for 7 days. Disease activity index (DAI) was evaluated on day 8, and colonic tissues were collected for biochemistry analysis. The fecal microbiota was characterized by high-throughput Illumina MiSeq sequencing. And plasma metabolic changes were detected by UPLC-MS. Our results showed that Pal treatment significantly reduced DAI scores and ameliorated colonic injury in mice with DSS-induced colitis. Mucosal integrity was improved and cell apoptosis was inhibited. Moreover, gut microbiota analysis showed that mice received Pal-treatment have higher relative abundance of Bacteroidetes and Firmicutes, but reduced amount of Proteobacteria. Moreover, Pal not only suppressed tryptophan catabolism in plasma, but also decreased the protein expression of indoleamine 2,3-dioxygenase 1 (IDO-1, the rate-limiting enzyme of tryptophan catabolism) in colon tissue. This is consolidated by molecular docking, which suggested that Pal is a potent IDO-1 inhibitor. Taken together, our findings demonstrate that Pal ameliorated DSS-induced colitis by mitigating colonic injury, preventing gut microbiota dysbiosis, and regulating tryptophan catabolism, which indicated that Pal has great therapeutic potential for colitis.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Alcaloides de Berberina/farmacología , Alcaloides de Berberina/uso terapéutico , Colitis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Triptófano/metabolismo , Animales , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos BALB C , Mucinas/genética , Proteínas de Uniones Estrechas/genética
3.
Front Pharmacol ; 8: 829, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29204117

RESUMEN

Inflammatory bowel disease (IBD) is a chronic immune-related disease mainly caused by the disequilibrium of T helper (Th) cell paradigm? Pogostone (PO) is one of the major chemical constituents of Pogostemon cablin (Blanco) Benth. The present study aims to investigate the potential benefit of PO against IBD in a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis model. PO treatment by enema significantly brought down the disease activity index (DAI) of the TNBS-challenged rats, which was manifested by the ameliorated inflammatory features including ulceration, adhesion, and edema. Hematoxylin-eosin (HE) staining and immunohistochemistry analysis showed that PO effectively relived colon damage by restoring epithelium, and more importantly, by inhibiting the infiltration of pro-inflammatory Th1 and Th17 cells in the colon. Additionally, PO inhibited the activity of myeloperoxidase and secretion of inflammatory cytokines including IFN-γ, IL-12p70, IL-17A, and IL-10. Together with our previous findings, the present data indicated that the anti-IBD effect of PO probably related to its direct inhibition on Th cell proliferation and suppression of the cytokines secretion. These results highlighted the potential of PO as a promising candidate to relieve IBD.

4.
Artículo en Inglés | MEDLINE | ID: mdl-28572827

RESUMEN

Triptolide (TP) is the major active component of Tripterygium wilfordii Hook F (TWHF) and possesses multiple pharmacological effects. However, hepatotoxicity of TP which is one of the toxic properties slows its progression in clinical application. 18ß-Glycyrrhetinic acid (GA) is the main bioactive ingredient of Licorice (Glycyrrhiza glabra L.), a herbal medicine famous for its detoxification. This study aims to investigate whether GA possesses protective effect against TP-induced hepatotoxicity in rats. TP interference markedly elevated serum levels of ALT, AST, and ALP, caused evident liver histopathological changes, and elevated hepatic TNF-α, IL-6, IL-1ß, and IFN-γ as well as nuclear translocation of NF-κB. TP also significantly elevated liver MDA and declined hepatic activities of SOD, CAT, and GSH-Px. Assay of TUNEL and apoptosis proteins (Bax, Bcl-2, and active caspase-3) showed that TP induced severe hepatocellular apoptosis. In contrast, low-dose GA (50 mg/kg) significantly reversed TP-induced changes above. However, high-dose GA (100 mg/kg) had no such effect. Overall, these findings indicated that low-dose GA but not high-dose GA exhibited a protective effect against TP-induced hepatotoxicity in rats by anti-inflammation, antioxidation, and antiapoptosis, which suggests that the doses of GA/Licorice should be carefully considered when used together with TWHF or TWHF preparations.

5.
Pharmacol Res ; 121: 70-82, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28456683

RESUMEN

Despite the increased morbidity of ulcerative colitis (UC) in recent years, available treatments remain unsatisfactory. Pogostemon cablin has been widely applied to treat a variety of gastrointestinal disorders in clinic for centuries, in which patchouli alcohol (PA, C15H26O) has been identified as the major active component. This study attempted to determine the bioactivity of PA on dextran sulfate sodium (DSS)-induced mice colitis and clarify the mechanism of action. Acute colitis was induced in mice by 3% DSS for 7 days. The mice were then given PA (10, 20 and 40mg/kg) or sulfasalazine (SASP, 200mg/kg) as positive control via oral administration for 7 days. At the end of study, animals were sacrificed and samples were collected for pathological and other analysis. In addition, a metabolite profiling and a targeted metabolite analysis, based on the Ultra-Performance Liquid Chromatography coupled with mass spectrometry (UPLC-MS) approach, were performed to characterize the metabolic changes in plasma. The results revealed that PA significantly reduced the disease activity index (DAI) and ameliorated the colonic injury of DSS mice. The levels of colonic MPO and cytokines involving TNF-α, IFN-γ, IL-1ß, IL-6, IL-4 and IL-10 also declined. Furthermore, PA improved the intestinal epithelial barrier by enhancing the level of colonic expression of the tight junction (TJ) proteins, for instance ZO-1, ZO-2, claudin-1 and occludin, and by elevating the levels of mucin-1 and mucin-2 mRNA. The study also demonstrated that PA inhibited the DSS-induced cell death signaling by modulating the apoptosis related Bax and Bcl-2 proteins and down-regulating the necroptosis related RIP3 and MLKL proteins. By comparison, up-regulation of IDO-1 and TPH-1 protein expression in DSS group was suppressed by PA, which was in line with the declined levels of kynurenine (Kyn) and 5-hydroxytryptophan (5-HTP) in plasma. The therapeutic effect of PA was evidently reduced when Kyn was given to mice. In summary, the study successfully demonstrated that PA ameliorated DSS-induced mice acute colitis by suppressing inflammation, maintaining the integrity of intestinal epithelial barrier, inhibiting cell death signaling, and suppressing tryptophan catabolism. The results provided valuable information and guidance for using PA in treatment of UC.


Asunto(s)
Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon/efectos de los fármacos , Sulfato de Dextran , Sesquiterpenos/uso terapéutico , Triptófano/metabolismo , Animales , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Colon/patología , Citocinas/análisis , Masculino , Ratones Endogámicos BALB C , Pogostemon/química , Sesquiterpenos/química
6.
BMC Complement Altern Med ; 17(1): 185, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28359333

RESUMEN

BACKGROUND: Xiao'er Qixingcha (EXQ) has been extensively applied to relieve dyspepsia and constipation in children for hundreds of years in China. However, the therapeutic mechanism underlying its efficacy remained to be defined. The present study aimed to clarify the possible laxative and immune-regulating effects of EXQ on two models of experimental constipation in mice, which mimicked the pediatric constipation caused by high-heat and high-protein diet (HHPD). METHODS: The two models of constipated mice were induced by HHPD or HHPD + atropine respectively. To investigate the laxative and immune-regulating activities of EXQ, animals were treated with three doses of EXQ (0.75, 1.5 and 3 g/kg) for 7 consecutive days. The fecal output parameters (number and weight), weight of intestinal content and, the thymus and spleen indexes were measured. The levels of sIgA, IL-10, TNF-α and LPS in colon and serum were determined by ELISA. Furthermore, the pathological changes of colon tissue were examined after routine H&E staining. RESULTS: Both HHPD and HHPD + atropine treatments obviously inhibited the fecal output and reduced the colonic sIgA, prominently increased the levels of IL-10 and TNF-α in colonic tissue and elevated the contents of LPS in serum and colonic tissues. In contrast, oral administration of EXQ significantly improved the feces characters and dose-dependently decreased the intestinal changes in both models. In HHPD model test, EXQ efficaciously boosted the sIgA level in a dose-dependent manner, significantly elicited decreases in TNF-α and IL-10 levels, and evidently decreased the spleen and thymus indexes. In HHPD + atropine model test, EXQ treatment reversed the pathological changes by not only dramatically decreasing the spleen index and the levels of LPS and IL-10, but also markedly elevating the thymus index. Furthermore, microscopic observation revealed that EXQ treatment maintained the integrity of colonic mucosa, and protected the colonic tissues from inflammation in the both models. CONCLUSIONS: EXQ exhibited prominent laxative activity and effectively protected the colonic mucosal barrier in two models of constipated mice, of which the mechanism might be closely associated with its propulsive and immune-regulating properties. The current results not only validated the rationale for the clinical application of EXQ in pediatric constipation related symptoms, but also threw new light on the immune-inflammatory responses accompanied with chronic constipation pathology.


Asunto(s)
Estreñimiento/tratamiento farmacológico , Estreñimiento/inmunología , Medicamentos Herbarios Chinos/administración & dosificación , Factores Inmunológicos/administración & dosificación , Laxativos/administración & dosificación , Animales , China , Colon/efectos de los fármacos , Colon/inmunología , Citocinas/inmunología , Dieta , Proteínas en la Dieta/efectos adversos , Proteínas en la Dieta/análisis , Calor , Humanos , Intestinos , Masculino , Ratones , Bazo/efectos de los fármacos , Bazo/inmunología , Timo/efectos de los fármacos , Timo/inmunología
7.
Artículo en Inglés | MEDLINE | ID: mdl-28424738

RESUMEN

Li-Fei-Xiao-Yan prescription (LFXY) has been clinically used in China to treat inflammatory and infectious diseases including inflammatory lung diseases. The present study was aimed at evaluating the potential therapeutic effects and potential mechanisms of LFXY in a murine model of lipopolysaccharide- (LPS-) induced acute lung injury (ALI). In this study, the mice were orally pretreated with LFXY or dexamethasone (positive drug) before the intratracheal instillation of LPS. Our data indicated that pretreatment with LFXY enhanced the survival rate of ALI mice, reversed pulmonary edema and permeability, improved LPS-induced lung histopathology impairment, suppressed the excessive inflammatory responses via decreasing the expression of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) and chemokine (MIP-2) and inhibiting inflammatory cells migration, and repressed oxidative stress through the inhibition of MPO and MDA contents and the upregulation of antioxidants (SOD and GSH) activities. Mechanistically, treatment with LFXY significantly prevented LPS-induced TLR4 expression and NF-κB (p65) phosphorylation. Overall, the present study suggests that LFXY protected mice from acute lung injury induced by LPS via inhibition of TLR4/NF-κB p65 activation and upregulation of antioxidative enzymes and it may be a potential preventive and therapeutic agent for ALI in the clinical setting.

8.
Exp Gerontol ; 77: 76-86, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26929999

RESUMEN

Pogostone, a chemical constituent of patchouli oil, has been confirmed to possess favorable anti-inflammatory property. In the present study, we investigated the possible anti-photoaging potential of pogostone and the underlying mechanism against UV-induced skin damage in mice. The macroscopic and histopathological lesions were significantly ameliorated by pretreatment of pogostone as compared to the VC group. Furthermore, topical application of pogostone markedly increased the activities of the antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and observably decreased malonaldehyde (MDA) level. Analysis of inflammatory cytokines showed obvious down-regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) in the pogostone groups. In addition, pogostone pretreatment evidently inhibited the abnormal expression of matrix metalloproteinases (MMP-1 and MMP-3). Taken together, pogostone exhibited prominent photo-protective activity mainly by its antioxidative and anti-inflammatory properties, promising it as an effective alternative pharmaceutical therapy for photoaging.


Asunto(s)
Aceites Volátiles/uso terapéutico , Envejecimiento de la Piel/efectos de los fármacos , Piel/patología , Animales , Antioxidantes/metabolismo , Citocinas/metabolismo , Femenino , Hiperplasia/tratamiento farmacológico , Malondialdehído/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Aceites Volátiles/farmacología , Piel/enzimología , Rayos Ultravioleta
9.
Rejuvenation Res ; 18(5): 437-48, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25849065

RESUMEN

It is known that solar ultraviolet (UV) radiation to human skin causes photo-aging, including increases in skin thickness and wrinkle formation and reduction in skin elasticity. UV radiation induces damage to skin mainly by superfluous reactive oxygen species and chronic low-grade inflammation, which eventually up-regulate the expression of matrix metalloproteinases (MMPs). In this study, the super-critical carbon dioxide extract from flowers and buds of Chrysanthemum indicum Linnén (CISCFE), which has been reported to possess free radical scavenging and anti-inflammatory properties, was investigated for its photo-protective effect by topical application on the skin of mice. Moreover, CISCFE effectively suppressed the UV-induced increase in skin thickness and wrinkle grading in a dose-dependent manner, which was correlated with the inhibition of loss of collagen fiber content and epidermal thickening. Furthermore, we observed that CISCFE could obviously decrease UV-induced skin inflammation by inhibiting the production of inflammatory cytokines (interleukin-1ß [IL-1ß, IL-6, IL-10, tumor necrosis factor-α), alleviate the abnormal changes of anti-oxidative indicators (superoxide dismutase, catalase, and glutathione peroxidase), and down-regulate the levels of MMP-1 and MMP-3. The results indicated that CISCFE was a novel photo-protective agent from natural resources against UV irradiation.


Asunto(s)
Dióxido de Carbono/farmacología , Chrysanthemum/química , Flores/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Envejecimiento de la Piel/efectos de la radiación , Rayos Ultravioleta , Animales , Colágeno/metabolismo , Citocinas/biosíntesis , Elasticidad , Epidermis/efectos de los fármacos , Epidermis/patología , Epidermis/efectos de la radiación , Femenino , Mediadores de Inflamación/metabolismo , Malondialdehído/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos
10.
J Ethnopharmacol ; 154(2): 408-18, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24747030

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pogostemon cablin has been widely used in traditional Chinese medicine for the treatment of many diseases, including skin disorders. In the skin beauty and care prescriptions, Pogostemon cablin is one of the top ten frequently used traditional Chinese medicines. AIM OF THE STUDY: The present study was aimed to investigate the protective effects of the essential oil of Pogostemon cablin (patchouli oil, PO) against UV-induced skin photoaging in mice. MATERIALS AND METHODS: To ensure the quality of PO, the chemical compositions of PO were identified, and the content of its chemical marker patchouli alcohol was determined, which was around 28.2% (g/g) in PO. During the experiment period, the dorsal depilated skin of mice was treated with PO for two hours prior to UV irradiation. Then the protective effects of PO on UV-induced skin photoaging were determined by macroscopic and histological evaluations, skin elastic test, collagen content determination and biochemical assays of malondiaidehyde (MDA) content, activities of anti-oxidative indicators including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT). RESULTS: Compared to UV exposure groups, present results showed that topical administration of PO, especially at dose of 6mg/mouse and 9mg/mouse, significantly inhibited the increase in skin wrinkle formation, alleviated the reduction in skin elasticity and increased the collagen content by about 21.9% and 26.3%, respectively. We also found that application of 6-9mg/mouse PO could not only decrease the epidermal thickness by about 32.6%, but also prevent the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, the content of MDA was decreased by almost 26.5% and activities of SOD, GSH-Px and CAT were significantly up-regulated after the treatment of PO. CONCLUSION: Results of present study revealed that PO was capable of maintaining skin structural integrity caused by UV irradiation and it was useful in preventing photoaging. These protective effects of PO were possibly due to its anti-oxidative property. Therefore, we suggested that PO should be viewed as a potential therapeutic agent for preventing photoaging.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Lamiaceae/química , Aceites de Plantas/uso terapéutico , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Administración Cutánea , Animales , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Etnofarmacología , Femenino , Medicina Tradicional China , Ratones Endogámicos , Aceites de Plantas/administración & dosificación , Aceites de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA