Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362252

RESUMEN

Food-derived tripeptides can relieve colitis symptoms; however, their alleviation mode has not been systematically evaluated as an alternative nutritional compound. This study aimed to reveal the potential mechanism of 8000 food-derived tripeptides against acute colitis using a computer-aided screening strategy. Forty-one potential hub targets related to colitis with a Fit score > 4.0 were screened to construct the protein-protein and protein-tripeptide network based on the PharmMapper database and STRING software (Ver. 11.5). In addition, 30 significant KEGG signaling pathways with p-values < 0.001 that the 41 hub targets mainly participated in were identified using DAVID software (Ver. 6.8), including inflammatory, immunomodulatory, and cell proliferation and differentiation-related signaling pathways, particularly in the Ras- and PI3K-Akt signaling pathways. Furthermore, molecular docking was performed using the Autodock against majorly targeted proteins (AKT1, EGFR, and MMP9) with the selected 52 tripeptides. The interaction model between tripeptides and targets was mainly hydrogen-bonding and hydrophobic interactions, and most of the binding energy of the tripeptide target was less than −7.13 kcal/mol. This work can provide valuable insight for exploring food-derived tripeptide mechanisms and therapeutic indications.


Asunto(s)
Colitis , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Medicamentos Herbarios Chinos/química , Colitis/tratamiento farmacológico , Computadores
2.
Medicine (Baltimore) ; 101(33): e30102, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984130

RESUMEN

BACKGROUND: Heart failure (HF) is the end stage of the development of heart disease, whose prognosis is poor. The previous research of our team indicated that the formulae containing Aconiti Lateralis Radix Praeparata and Lepidii Semen Descurainiae Semen (ALRP-LSDS) could inhibit myocardial hypertrophy, inhibit cardiomyocyte apoptosis, delay myocardial remodeling (REM), and improve the prognosis of patients with HF effectively. In order to explore the mechanism of ALRP-LSDS for the treatment of HF, a combined approach of network pharmacology and molecular docking was conducted. METHODS: Public database TCMSP was used to screen the active compounds of ALRP-LSDS. The targets of screened active compounds were obtained from the TCMSP database and predicted using the online analysis tool PharmMapper. The targets of HF were obtained from 6 databases including GeneCards, OMIM, DrugBank, TTD, PharmGKB, and DisGeNET. Protein-protein interaction and enrichment analysis were performed, respectively, by STRING and Metascape online tools after merging the targets of active compounds and HF. Cytoscape software was used to conduct networks. Finally, molecular docking was performed by Vina to verify the correlation between key targets and active compounds. RESULTS: Final results indicated that the active compounds including ß-sitosterol, isorhamnetin, quercetin, kaempferol, and (R)-norcoclaurine, the targets including AKT1, CASP3, and MAPK1 might be the main active compounds and key targets of ALRP-LSDS for the treatment of HF separately. The binding ability of AKT1 to the main active compounds was better compared with the other 2 key targets, which means it might be more critical. The pathways including AGE-RAGE signaling pathway in diabetic complications, Pathways in cancer, and Fluid shear stress and atherosclerosis might play important roles in the treatment of HF with ALRP-LSDS. In general, ALRP-LSDS could inhibit cardiomyocyte apoptosis, delay REM, and improve cardiac function through multicompound, multitarget, and multipathway, which contributes to the treatment of HF. CONCLUSIONS: Based on the combined approach of network pharmacology and molecular docking, this study screened out the main active compounds, key targets, and main pathways of ALRP-LSDS for the treatment of HF, and revealed its potential mechanisms, providing a theoretical basis for further research.


Asunto(s)
Aconitum , Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Aconitum/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Semillas
3.
Artículo en Inglés | MEDLINE | ID: mdl-34824593

RESUMEN

Trichosanthes kirilowii Maxim. and Bulbus allii Macrostemi are the components of Gualou Xiebai decoction (GLXB), a commonly used herbal combination for the treatment of coronary heart disease (CHD) in traditional Chinese medicine. Although GLXB is associated with a good clinical effect, its active compounds and mechanism of action remain unclear, which limits its clinical application and the development of novel drugs. In this study, we explored key compounds, targets, and mechanisms of action for GLXB in the treatment of CHD using the network pharmacology approach. We identified 18 compounds and 21 action targets via database screening. Enrichment analysis indicated that the effects of GLXB in patients with CHD are primarily associated with the regulation of signalling pathways for tumour necrosis factor, nuclear factor-kappa B, hypoxia-inducible factor-1, arachidonic acid metabolism, and insulin resistance. GLXB thus exerts anti-inflammatory, antihypoxic, and antiagglutinating effects; regulates lipid metabolism; and combats insulin resistance in CHD via these pathways, respectively. After reverse targeting, we observed that the main active compounds of GLXB in the treatment of CHD were quercetin, naringenin, ß-sitosterol, ethyl linolenate, ethyl linoleate, and prostaglandin B1. To explore the potential of these compounds in the treatment of CHD, we verified the affinity of the compounds and targets via molecular docking analysis. Our study provides a bridge for the transformation of natural herbs and molecular compounds into novel drug therapies for CHD.

4.
Artículo en Inglés | MEDLINE | ID: mdl-34285700

RESUMEN

Radix Astragali and Semen Lepidii (HQ-TLZ) is a commonly used herbal medicine combination for treatment of heart failure, which has a good clinical effect. However, its active components and mechanism of action are not clear, which limits its clinical application and development. In this study, we explored the mechanism of action of HQ-TLZ in the treatment of heart failure based on network pharmacology. We obtained 11 active ingredients and 109 targets from the TCMSP database and SwissTargetPrediction database. Next, we constructed the action network and carried out enrichment analysis. The results showed that HQ-TLZ treatment of heart failure is primarily achieved by regulating the insulin resistance, erbB signaling pathway, PI3K-Akt signaling pathway, and VEGF signaling pathway. After inverse targeting, molecular docking, and literature search, we determined that the equivalent molecular groups of HQ-TLZ in the treatment of heart failure were quercetin and kaempferol. Based on network pharmacology, we reveal the mechanism of action of HQ-TLZ in the treatment of heart failure to a certain extent. At the same time, we determined the composition of the equivalent molecular group. This provides a bridge for the consistency evaluation of natural herbs and molecular compounds, which is beneficial to the development of novel drugs and further research.

5.
Food Chem Toxicol ; 154: 112353, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34146619

RESUMEN

This study aimed was to explore the hepatoprotective potential of soybean meal peptides (SPs) against alcohol-induced liver injury and investigate the underlying mechanisms through transcriptome analysis. The chemical antioxidant analysis of SPs exhibited potent ABTS radical scavenging capacity (11.94 ± 0.41 mg TE/100 mg peptide), ferric reducing antioxidant power (6.42 ± 0.32 mmol Fe2+/100 mg peptide), and oxygen radical absorption capacity (14.78 ± 0.01 mg TE/100 mg peptide). Moreover, SPs increased cell viability and reduced intracellular reactive oxygen species levels in Caco-2 cells by H2O2-induced, and without cytotoxicity. In the mice model, preintervention with SPs reduced the levels of aspartate transaminase/alanine transaminase, total cholesterol, triglyceride and malondialdehyde by alcohol-induced, meanwhile, increased the levels of total superoxide dismutase, glutathione and catalase by alcohol-induced. Histological analysis showed that SPs alleviated the liver injury by alcohol-induced and no toxic effects on the kidneys. According to transcriptome analysis, 1737 genes were significantly differentially expressed (1076 up-regulated and 661 down-regulated) after SPs pretreatment. The main functions of these genes were related to inflammation, lipid metabolism and oxidation. The findings from the present study suggested that SPs produced positive hepatoprotection and showed potential to be used as a dietary supplement or an ingredient of functional food.


Asunto(s)
Etanol/toxicidad , Depuradores de Radicales Libres/uso terapéutico , Hepatopatías Alcohólicas/prevención & control , Péptidos/uso terapéutico , Proteínas de Soja/uso terapéutico , Transcriptoma/fisiología , Animales , Células CACO-2 , Depuradores de Radicales Libres/toxicidad , Expresión Génica/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Masculino , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Péptidos/toxicidad , Proteínas de Soja/toxicidad , Glycine max/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-33273955

RESUMEN

Fuxin mixture (FXHJ) is a prescription for the treatment of heart failure. It has been shown to be effective in clinical trials, but its active ingredients and mechanism of action are not completely clear, which limits its clinical application and international promotion. In this study, we used network pharmacology to find, conclude, and summarize the mechanism of FXHJ in the treatment of heart failure. From FXHJ, we found 39 active ingredients and 47 action targets. Next, we constructed the action network and was conducted enrichment analysis. The results showed that FXHJ mainly treated heart failure by regulating the MAPK signaling pathway, PI3KAkt signaling pathway, cAMP signaling pathway, TNF signaling pathway, toll-like receptor signaling pathway, VEGF signaling pathway, NF-kappa B signaling pathway, and the apoptotic signaling molecule BCL2. Through the research method of network pharmacology, this study summarized the preliminary experiments of the research group and revealed the probable mechanism of FXHJ in the treatment of heart failure to a certain extent, which provided some ideas for the development of new drugs.

7.
J Sci Food Agric ; 91(12): 2201-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21547919

RESUMEN

BACKGROUND: Corn silk is a traditional Chinese herbal medicine, which has been widely used for treatment of some diseases. In this study the effects of pulsed electric field on the extraction of polysaccharides from corn silk were investigated. RESULTS: Polysaccharides in corn silk were extracted by pulsed electric field and optimized by response surface methodology (RSM), based on a Box-Behnken design (BBD). Three independent variables, including electric field intensity (kV cm(-1) ), ratio of liquid to raw material and pulse duration (µs), were investigated. The experimental data were fitted to a second-order polynomial equation and also profiled into the corresponding 3-D contour plots. Optimal extraction conditions were as follows: electric field intensity 30 kV cm(-1) , ratio of liquid to raw material 50, and pulse duration 6 µs. Under these condition, the experimental yield of extracted polysaccharides was 7.31% ± 0.15%, matching well with the predicted value. CONCLUSION: The results showed that a pulsed electric field could be applied to extract value-added products from foods and/or agricultural matrix.


Asunto(s)
Inflorescencia/química , Polisacáridos/aislamiento & purificación , Zea mays/química , Fraccionamiento Químico/métodos , Medicamentos Herbarios Chinos/química , Electroforesis en Gel de Campo Pulsado/métodos , Cinética , Modelos Estadísticos , Polisacáridos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA