Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 42(21): 4135-4141, 2017 Nov.
Artículo en Chino | MEDLINE | ID: mdl-29271151

RESUMEN

To investigate the microbial contamination in Chinese herbal decoction pieces with different functional types by studying the total aerobic microbial count (TAMC), and total yeast and mould count (TYMC) in 40 samples of 8 types of root decoction pieces; further evaluate the contamination load of bile-resistant Gram-negative bacteria, and identify the Gram-negative bacteria by using biochemical identification system for Gram-negative bacteria. Our results showed that the TAMC value was more than 1 000 CFU•g⁻¹ in 85% (34/40) samples, and was more than 100 CFU•g⁻¹ in 30% (12/40) samples; the contamination of bile-resistant Gram-negative bacteria was detected in 45% (18/40) of the samples. The bile-resistant Gram-negative bacteria load of seven batches of samples was N>1 000 MPN•g⁻¹. Sixteen bacterium strains including Serratia plymouthensis, Cedecea neteri, Escherichia vulneris, Klebsiella oxytoca, Enterobacter amnigenus, E. cloacae, E. sakazakii, Proteus penneri and E. gergoviae were obtained and identified. E. cloacae was the predominant bacterium that was isolated from Salviae Miltiorrhizae Radix et Rhizoma, while E. amnigenus, Yersinia pseudotuberculosis was the typical bacterium of Ophiopogonis Radix and Codonopsis Radix, respectively. All these suggested that the contamination of bile-resistant Gram-negative bacteria was severe for the root decoction pieces in Wuhan city. Microbial species have certain selection specificity for medicinal ingredients, so the type and limit of control bacteria for detection should be formulated according to the pollution type and quantity of bile-resistant Gram-negative bacteria.


Asunto(s)
Antibacterianos/farmacología , Bilis , Medicamentos Herbarios Chinos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Raíces de Plantas/química
2.
Phytother Res ; 29(3): 357-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25418925

RESUMEN

Studies have shown chemopreventive and/or chemotherapeutic effects of several curcumin-based combinatorial treatments on colorectal cancer cells. However, their in vivo effects remain unclear. This study has demonstrated the therapeutic effect of curcumin and oxaliplatin, alone or in combination, on subcutaneously xenografted LoVo human colorectal cancer cells in immunodeficient (nu/nu) mice in vivo. Combinatorial administration of curcumin and oxaliplatin evidently inhibited the growth of colorectal cancer in nude mice, which was significantly more effective than either agent alone. Curcumin combined with oxaliplatin treatment induced apoptosis, accompanied by ultrastructural changes and cell cycle arrest in S and G2/M phases. Further mechanism analysis indicated that while the number of apoptotic tumor cells and the expression of Bax, caspase-3, and poly (ADP-ribose) polymerase (PARP) increased significantly, the expression of Bcl-2, survivin, HSP70, pro-caspase-3, and pro-PARP were dramatically suppressed in tumor cells after the treatment with combinatorial curcumin and oxaliplatin for 22 days. Taken together, the present study has demonstrated that administration of combined curcumin and oxaliplatin effectively suppressed colorectal carcinoma in vivo through inducing apoptosis and thus may provide an effective treatment for colorectal carcinoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Curcumina/farmacología , Compuestos Organoplatinos/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Masculino , Ratones , Ratones Desnudos , Oxaliplatino , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Phytother Res ; 27(3): 422-30, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22628241

RESUMEN

Curcumin, a natural plant extract from Curcuma longa, is known for its anti-carcinogenic and chemopreventive effects on a variety of experimental cancer models. In this study, we evaluated the effects of curcumin and elucidated its mechanism in human colorectal carcinoma cells. Cell viability assay showed that curcumin significantly inhibited the growth of LoVo cells. Curcumin treatment induced the apoptosis accompanied by ultra-structural changes and release of lactate dehydrogenase in a dose-dependent manner. Moreover, treatment with 0-30 µg/mL curcumin decreased the mitochondrial membrane potential and activated the caspase-3 and caspase-9 in a dose- and time-dependent manner. Nuclear and annexin V/PI staining showed that curcumin induced the apoptosis of LoVo cells. FACS analysis revealed that curcumin could induce the cell cycle arrest of LoVo cells at the S phase. Furthermore, western blotting analysis indicated that curcumin induced the release of cytochrome c, a significant increase of Bax and p53 and a marked reduction of Bcl-2 and survivin in LoVo cells. Taken together, our results suggested that curcumin inhibited the growth of LoVo cells by inducing apoptosis through a mitochondria-mediated pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Curcumina/farmacología , Mitocondrias/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Curcuma/química , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Survivin , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA