Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Prep Biochem Biotechnol ; 53(4): 424-432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35857437

RESUMEN

Biorefinery of onion vinegar (OV) is attractive as a method for producing functional foods from onions or onion by-products. In this study, a two-stage fermentation of OV using Saccharomyces cerevisiae ATCC9763 and Acetobacter pasteurianus CICC20001 was carried out at 28 °C, the titratable acidity reached 4.01%, and the YA/E was 69.64% at 72 h. Based on this, semi-continuous fermentation was performed, proceeded to charge-discharge consisting of three cycles, and the yield, productivity, and specific production rate were 76.71%, 17.73 g/(L·d), and 20.51 h-1, respectively, which was higher than fed-batch fermentation. The in vivo antioxidant experiments showed that OV significantly increased GSH-Px, SOD, and CAT enzyme activities of Caenorhabditis elegans at 271.57, 129.26, and 314.68%, respectively. Nutritional analysis revealed that the total flavonoids and polyphenols were 3.01 mg/mL and 976.76 µg/mL, respectively. It was also shown that the acetic acid to total organic acid (A/T) ratio of OV was 79.02%, and the total free amino acid content was 262.30 mg/100 mL, 1.78-7.44 times higher than other fruit vinegar. The OV prepared in this study showed higher quality than the commercial vinegar.


Asunto(s)
Ácido Acético , Cebollas , Agricultura , Aminoácidos , Antioxidantes , Saccharomyces cerevisiae
2.
Molecules ; 27(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500704

RESUMEN

The Dendrobium officinale flower is a non-medicinal part of the plant, rich in a variety of nutrients and bioactive ingredients. The purpose of this article was to explore the preparation conditions of anthocyanins (ACNs) from the D. officinale flower. Subsequently, its anti-aging effects were evaluated with Caenorhabditis elegans. Results showed that the ACNs had antioxidant activities on scavenging free radicals (DPPH· and ABTS+·), and the clearance rate was positively correlated with the dose. Additionally, ACNs significantly increased the activity of superoxide dismutase (SOD) in C. elegans, which was 2.068-fold higher than that of the control. Treatment with ACNs at 150 µL extended the lifespan of C. elegans by 56.25%, and treatment with ACNs at 50 µL promoted fecundity in C. elegans. Finally, the protective effect of ACNs enhanced stress resistance, thereby increasing the survival numbers of C. elegans, which provided insights for the development and practical application of functional products.


Asunto(s)
Proteínas de Caenorhabditis elegans , Dendrobium , Animales , Caenorhabditis elegans , Antocianinas/farmacología , Estrés Oxidativo , Longevidad , Antioxidantes/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Extractos Vegetales/farmacología , Dendrobium/metabolismo
3.
Plant Foods Hum Nutr ; 77(2): 206-211, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35441311

RESUMEN

Recently, there has been renewed interest in biorefining of agricultural onion into functional products. In this study, onion vinegar (OV) are prepared by a two-stage semi-continuous fermentation method, and its content of total flavonoids (3.01 mg/mL) and polyphenols (976.76 µg/mL) is superior to other commercial vinegars. OV possesses a high radical scavenging activity and enhances the antioxidant enzyme activities in vivo, alleviating intracellular oxidative stress in Caenorhabditis elegans. Treated by OV, the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH·), diammonium 2,2'-azino-bis (3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS+·) and 2-phenyl-4,4,5,5- tetramethylimidazoline-1-oxyl 3-Oxide (PTIO·) free radicals clearance rates are 88.76, 98.76 and 90.54%, respectively in vitro. Whereas the glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in C. elegans reach 271.57, 129.26, and 314.68%, respectively. Using RNAi and RT-PCR, it has been further confirmed that OV modulates transcription factor SKN-1, the nuclear factor erythroid 2-related factor 2 (Nrf2) homologous, in C. elegans, enhancing the resistance of C. elegans against sodium arsenite stress. Lifespan analysis reveals that 1 mL OV extends the maximum lifespan of the nematode to 26 days. Evidence is presented which shows that OV increases the lifespan of C. elegans by activating the SKN-1 signaling pathway. Overall, the OV is a well functional condiment, enhancing the value-added of onion.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ácido Acético/análisis , Ácido Acético/metabolismo , Animales , Antioxidantes/análisis , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Longevidad , Cebollas/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA