RESUMEN
The formation of blood vessel system under a relatively higher Cu2+ ion level is an indispensable precondition for tumor proliferation and migration, which was assisted in forming the tumor immune microenvironment. Herein, a copper ions nano-reaper (LMDFP) is rationally designed not only for chelating copper ions in tumors, but also for combination with photothermal therapy (PTT) to improve antitumor efficiency. Under 808 nm laser irradiation, the fabricated nano-reaper converts light energy into thermal energy to kill tumor cells and promotes the release of D-penicillamine (DPA) in LMDFP. Photothermal properties of LMDFP can cause tumor ablation in situ, which further induces immunogenic cell death (ICD) to promote systematic antitumor immunity. The released DPA exerts an anti-angiogenesis effect on the tumor through chelating copper ions, and inhibits the expression of programmed death ligand 1 (PD-L1), which synergizes with PTT to enhance antitumor immunity and inhibit tumor metastasis. Meanwhile, the nanoplatform can emit near-infrared-IIb (NIR-IIb) fluorescence under 980 nm excitation, which can be used to track the nano-reaper and determine the optimal time point for PTT. Thus, the fabricated nano-reaper shows powerful potential in inhibiting tumor growth and metastasis, and holds great promise for the application of copper nanochelator in precise tumor treatment.
Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Fototerapia , Cobre/farmacología , Fluorescencia , Neoplasias/tratamiento farmacológico , Iones , Línea Celular Tumoral , Microambiente TumoralRESUMEN
The development of sustainable polymers that possess useful material properties competitive with existing petroleum-derived polymers is a crucial goal but remains a formidable challenge for polymer science. Here we demonstrate that irreversible ring-opening polymerization (IROP) of biomass-derived five-membered thionolactones is an effective and robust strategy for the polymerization of non-strained five-membered rings-these polymerizations are commonly thermodynamically forbidden under ambient conditions, at industrially relevant temperatures of 80-100 °C. Computational studies reveal that the selective IROP of these thionolactones is thermodynamically driven by S/O isomerization during the ring-opening process. IROP of γ-thionobutyrolactone, a representative non-strained thionolactone, affords a sustainable polymer from renewable resources that possesses external-stimuli-triggered degradability. This poly(thiolactone) also exhibits high performance, with its key thermal and mechanical properties comparing well to those of commercial petroleum-based low-density polyethylene. This IROP strategy will enable conversion of five-membered lactones, generally unachievable by other polymerization methods, into sustainable polymers with a range of potential applications.