Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Free Radic Biol Med ; 143: 454-470, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31472247

RESUMEN

Brachial plexus avulsion (BPA) occurs when the spinal nerve roots are pulled away from the surface of the spinal cord and disconnects neuronal cell body from its distal downstream axon, which induces massive motoneuron death, motor axon degeneration and de-innervation of targeted muscles, thereby resulting in permanent paralysis of motor functions in the upper limb. Avulsion injury triggers oxidative stress and intense local neuroinflammation at the lesioned site, leading to the death of most motoneurons. Berberine (BBR), a natural isoquinoline alkaloid derived from medicinal herbs of Berberis and Coptis species, has been reported to possess neuro-protective, anti-inflammatory and anti-oxidative effects in various animal models of central nervous system (CNS)-related disorders. In this study, we aimed to investigate the effect of BBR on motoneuron survival and axonal regeneration following spinal root avulsion plus re-implantation in rats. Our results indicated BBR significantly accelerated motor function recovery in the forelimb as revealed by the increased Terzis grooming test score, facilitated motor axon regeneration as evidenced by the elevated number of Fluoro-Gold-labeled and P75-positive regenerative motoneurons. The survival of motoneurons was notably promoted by BBR administration presented with boosted ChAT-immunopositive and neutral red-stained neurons. BBR treatment efficiently alleviated muscle atrophy, attenuated functional motor endplates loss in biceps and prevented the reduction of motor axons in the musculocutaneous nerve. Additionally, BBR treatment markedly mitigated the avulsion-induced neuroinflammation via inhibiting microglial and astroglial reactivity, up-regulated the expression of antioxidative indicator Cu/Zn SOD, and down-regulated the levels of nNOS, 3-NT, lipid peroxidation and NF-κB, as well as promoted SIRT1, PI3K and Akt activation. Collectively, BBR might be a promising therapy to assist re-implantation surgery for the treatment of BPA.


Asunto(s)
Axones/fisiología , Berberina/farmacología , Neuronas Motoras/citología , Regeneración Nerviosa/efectos de los fármacos , Reimplantación/métodos , Traumatismos de la Médula Espinal/prevención & control , Raíces Nerviosas Espinales/cirugía , Animales , Femenino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/patología , Raíces Nerviosas Espinales/lesiones , Raíces Nerviosas Espinales/patología , Nervios Espinales/trasplante
2.
J Ethnopharmacol ; 234: 44-56, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30610932

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chrysanthemum indicum Linne (C. indicum), a healthy food and folk medicine in China for thousands of years, has been reported to exert heat-clearing and detoxifying effects and extensively applied to treat various symptoms such as inflammation diseases, hepatitis and headache. AIM OF THIS STUDY: The purpose of the present study was to investigate the protective effect of the supercritical carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE) on D-galactose-induced brain and liver damage during aging process and to illuminate the underlying mechanisms. MATERIALS AND METHODS: Mice were orally administrated with CISCFE (100, 150 and 300 mg/kg) after injection with D-galactose. 24 h after the last administration, the blood samples, whole brain and liver tissues were collected for biochemical analysis, histological examination and western blot analysis. The body weight, spleen and thymus indexes, alanine transaminase (ALT), aspartate transaminase (AST), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) in brain and liver, interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and necrosis factor-α (TNF-α) were detected. Besides, the expressions of Bax, Bcl-2 and cleaved caspase-3 were determined by western blot assay. RESULTS: The results indicated that CISCFE effectively increased the suppressed body weight, attenuated the decline of thymus and spleen indexes, and reduced the elevated levels of ALT and AST induced by D-gal. Furthermore, CISCFE might notably alleviate D-gal-induced abnormal alterations in structure and function of brain and liver dose-dependently via renewing normal antioxidant enzymes activities (SOD, CAT, GSH-Px), reducing MDA accumulation, decreasing inflammatory cytokines productions (IL-1ß, IL-6, TNF-α), as well as attenuating the increase of Bax/Bcl-2 ratio and cleaved caspase-3 activation in the liver and brain. CONCLUSIONS: Taken together, our present results suggested that CISCFE treatment could effectively mitigate the D-gal-induced hepatic and cerebral injury, and the underlying mechanism might be tightly related to the decreased oxidative stress, inflammation and apoptosis, indicating CISCFE might be an alternative and promising agent for the treatment of aging and age-associated brain and liver diseases.


Asunto(s)
Chrysanthemum/química , Inflamación/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Envejecimiento/patología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Dióxido de Carbono/química , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Flores , Galactosa/toxicidad , Inflamación/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Extractos Vegetales/administración & dosificación , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA