Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 36(1): e9205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34636119

RESUMEN

RATIONALE: Salvianolic acid B (Sal B), the Q-marker in Salvia miltiorrhiza, was proved to present an obvious anti-diabetes effect when treated as a food intake. Until now, the metabolism feature, tissue distribution and anti-diabetes mechanism of Sal B have not been fully elucidated. METHODS: The metabolites of Sal B in rats were profiled using ultrahigh-performance liquid chromatography coupled with time-of-flight mass spectrometry. The potential anti-diabetes mechanism of Sal B was predicted by network pharmacology. RESULTS: A total of 31 metabolites were characterized in rats after ingestion of Sal B at a dosage of 40 mg/kg, including 1 in plasma, 19 in urine, 31 in feces, 0 in heart, 0 in liver, 0 in spleen, 1 in lung, 1 in kidney and 0 in brain. Among them, 18 metabolites were reported for the first time. Phase I reactions of hydrolysis, hydrogenation, dehydroxylation, hydroxylation, decarboxylation and isomerization, and phase II reactions of methylation were found in Sal B. Notably, decarboxylation and dehydroxylation were revealed in Sal B for the first time. The pharmacology network results showed that Sal B and its metabolites could regulate ALB, PLG, ACE, CASP3, MMP9, MMP2, MTOR, etc. The above targets were involved in insulin signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, TNF signaling pathway, etc. CONCLUSIONS: The metabolism feature of Sal B in vivo was systematically revealed, and its anti-diabetes mechanism for further pharmacological validations was predicted based on metabolite profiling and network pharmacology for the first time.


Asunto(s)
Benzofuranos/farmacocinética , Diabetes Mellitus/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacocinética , Hipoglucemiantes/farmacocinética , Animales , Benzofuranos/administración & dosificación , Benzofuranos/química , Caspasas/genética , Caspasas/metabolismo , Cromatografía Líquida de Alta Presión , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Heces/química , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Isomerismo , Riñón/química , Riñón/metabolismo , Hígado/química , Hígado/metabolismo , Pulmón/química , Pulmón/metabolismo , Masculino , Espectrometría de Masas , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Farmacología en Red , Ratas , Salvia miltiorrhiza/química
2.
Rapid Commun Mass Spectrom ; 35(18): e9157, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34182613

RESUMEN

RATIONALE: Characterizing the functional mechanism of quality control marker (Q-marker) was of great importance in revealing the primary pharmacological mechanism of herbs or the other complex system, and drug-related metabolites always contribute to the pharmacological functions. Cortex Phellodendri was used as a core herb in the treatment of diabetes mellitus (DM). As a Q-marker of Cortex Phellodendri, the role of phellodendrine in DM was still unclear. Thus, the characterization of phellodendrine-related metabolites in vivo and the subsequent induced functional mechanism exerted great importance in elucidating the anti-DM mechanism of Cortex Phellodendri. METHODS: An ultra-high-performance liquid chromatography-coupled time-of-flight mass spectrometry (UHPLC/Q-TOF MS) method was developed to profile metabolites of phellodendrine in rats. The potential pharmacological mechanism against DM was predicted by network pharmacology. RESULTS: A total of 19 phellodendrine-related metabolites were screened out in rats for the first time. Among them, M4, M5, M9, and M12 were regarded as the primary metabolites. Meanwhile, phase I metabolic reactions of hydroxylation, demethylation, and isomerization and phase II reactions of glucuronidation and sulfation occurred to phellodendrine; glucuronidation and hydroxylation were the two main metabolic reactions. Moreover, the potential targets of phellodendrine and three main metabolites (M4, M5, and M12) were predicted by a network pharmacological method, and they mainly shared 52 targets, including PDE5A, CHRNA3, SIGMAR1, F3, ESR1, DRD1, DRD2, DRD3, and DRD4. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that calcium signaling pathway, cGMP-PKG signaling pathway, and cAMP signaling pathway were regarded as the core mechanism of phellodendrine to treat DM. CONCLUSION: The metabolic feature of phellodendrine in vivo was revealed for the first time, and its anti-DM mechanism information for further pharmacological validations was also supplied. It also gave a direction to further elucidation of pharmacological mechanism of Cortex Phellodendri in treating DM.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Diabetes Mellitus/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacocinética , Espectrometría de Masas/métodos , Quinolizinas/farmacocinética , Animales , Diabetes Mellitus/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/metabolismo , Humanos , Masculino , Farmacología en Red , Quinolizinas/administración & dosificación , Quinolizinas/metabolismo , Ratas , Ratas Sprague-Dawley
3.
J Pharm Biomed Anal ; 193: 113721, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33147537

RESUMEN

Lonicerae japonicae flos.(LJF) was widely used as a drug to treat upper respiratory tract infection or a tea to clear heat in Asian countries for thousands of years. Despite of its curative effects confirmed by modern pharmacological methods, its functional materials and mechanism against influenza were still unclear and needed further investigation. In this study, an integrated strategy based on in vivo substances profiling and network pharmacology was proposed and applied to screen out the potential anti-influenza substances and mechanism of LJF. An UHPLC/Q-TOF MS method was utilized to profile the chemical components in LJF and their metabolites in rats. The targets of absorbed prototypes were predicted by Swiss Target Prediction, and they were further analyzed by String and Kyoto Encyclopedia of Genes and Genomes (KEGG). As a result, a total of 126 chemical components mainly featuring three chemical structure types were characterized, including 70 iridoid glycosides, 17 caffeoylquinic acids, 24 flavonoids, and 15 other types compounds. Among them, ten N-contained iridoid glycosides were characterized as potential novel compounds. Moreover, 141 xenobiotics (74 prototypes and 67 metabolites) were clearly screened out in rat plasma and urine after ingestion of LJF. Phase II reactions (sulfation, glucuronidation, methylation) and phase I reactions (dehydroxylation, hydrogenation, hydrolysis, N-heterocyclization) were the main metabolic reactions of LJF in rats. Further, a total of 338 targets were predicted and TNF, PTGS2 and EGFR were the three main targets involved in the pathology of influenza. In addition to normal NF-κB pathway, T cell signal pathway and mTOR signal pathway were the other patterns for LJF to achieve its anti-flu effects. Our work provided the meaningful data for further pharmacological validation of LJF against influenza, and a new strategy was also proposed for minimizing the process to reveal the mechanism and functional basis of TCMs.


Asunto(s)
Medicamentos Herbarios Chinos , Gripe Humana , Lonicera , Animales , Cromatografía Líquida de Alta Presión , Disección , Medicamentos Herbarios Chinos/farmacología , Ratas
4.
Artículo en Inglés | MEDLINE | ID: mdl-32871375

RESUMEN

Traditional Chinese medicine was widely used in China since its definite effects and therapy. The components of TCM were absorbed into the circle system as the format of prototypes or metabolites, which contributed to the therapy or side effects. Declaring the functional changes in this process was of great importance to the clinical applications. In this work, an integrated strategy based on metabolites' profiling and network pharmacology was proposed for exploring the pharmacological changes of compounds in vivo. Arctiin, the main component in Fructus Arctii with various kinds of bioactivities, was used as an example. An ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry and metabolynx™software was applied to characterize the metabolites of arctiin in rats at a dosage of 100 mg/kg; network pharmacology was applied to characterize the functional changes. As a result, fifty-three metabolites (32 in plasma, 40 in urine, 19 in bile, 20 in feces, 1 in brain, 12 in liver and 4 in lungs) were screened out and characterized, and 3 of them were unambitiously identified by comparison with standard substances. Among them, 38 metabolites were reported for the first time. It was found the major metabolic pathways of arctiin in rats were demethylation, lactone-opening and phase II conjugations with sulfate and glucuronide.It also confirmed that M14, M15, M18, M23, M22, M43 and M45 were the major circulating forms of arctiin in rats following oral administration. In addition to the above metabolic reactions, phase I reactions of hydrolysis, demethylation, dehydroxylation were also observed, and dehydrogenation were first revealed metabolic patterns of arctiin in rats. Meanwhile, in addition to the main targets of arctiin (MTOR, EGFR and MAPK14), its metabolites targeted additional 392 targets with additional functions of anti-hepatitis B or viral carcinogenesis (SRC, CAPS3, PIK3CA, CDK4, ESR1, MMP9 and ERBB2). The above results provided very important information for understanding the metabolism and functional changes of arctiinin vivo, and supporting data for further pharmacological evaluation. Our work also provided a newsight for elucidation of functional changes of TCMs in vivo.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos , Furanos , Glucósidos , Espectrometría de Masas/métodos , Animales , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/farmacocinética , Furanos/administración & dosificación , Furanos/metabolismo , Furanos/farmacocinética , Glucósidos/administración & dosificación , Glucósidos/metabolismo , Glucósidos/farmacocinética , Masculino , Redes y Vías Metabólicas , Mapas de Interacción de Proteínas , Ratas , Ratas Sprague-Dawley , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA