Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Biol Macromol ; 253(Pt 1): 126582, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652332

RESUMEN

Adverse environments, especially drought conditions, deeply influence plant development and growth in all aspects, and the yield and quality of tea plants are largely dependent on favorable growth conditions. Although tea plant responses to drought stress (DS) have been studied, a comprehensive multilayer epigenetic, transcriptomic, and proteomic investigation of how tea responds to DS is lacking. In this study, we generated DNA methylome, transcriptome, proteome, and phosphoproteome data to explore multiple regulatory landscapes in the tea plant response to DS. An integrated multiomics analysis revealed the response of tea plants to DS at multiple regulatory levels. Furthermore, a set of DS-responsive genes involved in photosynthesis, transmembrane transportation, phytohormone metabolism and signaling, secondary metabolite pathways, transcription factors, protein kinases, posttranslational and epigenetic modification, and other key stress-responsive genes were identified for further functional investigation. These results reveal the multilayer regulatory landscape of the tea plant response to DS and provide insight into the mechanisms of these DS responses.


Asunto(s)
Camellia sinensis , Sequías , Proteómica , Regulación de la Expresión Génica de las Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Té/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Physiol Biochem ; 160: 27-36, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33454634

RESUMEN

Tea varieties with specific colours have often been studied by researchers. However, previous studies on the albinism of tea plants have mostly been based on plants with different genetic backgrounds or focused on common components in albino tea leaves, such as amino acids, flavones, and carotenoids. In this study, we conducted widely targeted metabolic and transcriptomic analyses between a wildtype tea genotype (Shuixian, LS) and its albino mutant (Huangjinshuixian, HS). At the molecular level, alteration of gene expression levels in the MEP pathway may have reduced the production of chlorophyll and carotenoids in HS, which could be the main cause of the phenotypic changes in HS. At the metabolite level, a large number of metabolites related to light protection that significantly accumulated in HS, including flavones, anthocyanins, flavonols, flavanones, vitamins and their derivatives, polyphenols, phenolamides. This result, combined with an enzyme activity experiment, suggested that the absence of photosynthetic pigments made the albino tea leaves of HS more vulnerable to UV stress, even under normal light conditions. In addition, except for the common amino acids, we also identified numerous nitrogen-containing compounds, including nucleotides and their derivates, amino acid derivatives, glycerophospholipids, and phenolamides, which implied that significant accumulation of NH4+ in albino tea leaves could not only promote amino acid synthesis but could also activate other specialized metabolic pathways related to nitrogen metabolism. In conclusion, our results provide new information to guide further studies of the extensive metabolic reprogramming events caused by albinism in tea plants.


Asunto(s)
Camellia sinensis , Metaboloma , Pigmentación/genética , Transcriptoma , Camellia sinensis/genética , Carotenoides , Clorofila , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética
3.
BMC Plant Biol ; 20(1): 98, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131737

RESUMEN

BACKGROUND: Shoot orientation is important for plant architecture formation, and zigzag-shaped shoots are a special trait found in many plants. Zigzag-shaped shoots have been selected and thoroughly studied in Arabidopsis; however, the regulatory mechanism underlying zigzag-shaped shoot development in other plants, especially woody plants, is largely unknown. RESULTS: In this study, tea plants with zigzag-shaped shoots, namely, Qiqu (QQ) and Lianyuanqiqu (LYQQ), were investigated and compared with the erect-shoot tea plant Meizhan (MZ) in an attempt to reveal the regulation of zigzag-shaped shoot formation. Tissue section observation showed that the cell arrangement and shape of zigzag-shaped stems were aberrant compared with those of normal shoots. Moreover, a total of 2175 differentially expressed genes (DEGs) were identified from the zigzag-shaped shoots of the tea plants QQ and LYQQ compared to the shoots of MZ using transcriptome sequencing, and the DEGs involved in the "Plant-pathogen interaction", "Phenylpropanoid biosynthesis", "Flavonoid biosynthesis" and "Linoleic acid metabolism" pathways were significantly enriched. Additionally, the DEGs associated with cell expansion, vesicular trafficking, phytohormones, and transcription factors were identified and analysed. Metabolomic analysis showed that 13 metabolites overlapped and were significantly changed in the shoots of QQ and LYQQ compared to MZ. CONCLUSIONS: Our results suggest that zigzag-shaped shoot formation might be associated with the gravitropism response and polar auxin transport in tea plants. This study provides a valuable foundation for further understanding the regulation of plant architecture formation and for the cultivation and application of horticultural plants in the future.


Asunto(s)
Camellia sinensis/genética , Proteínas de Plantas/genética , Tallos de la Planta/crecimiento & desarrollo , Transcriptoma , Camellia sinensis/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética
4.
Biomolecules ; 10(2)2020 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-32079100

RESUMEN

Trichomes, which develop from epidermal cells, are regarded as one of the key features that are involved in the evaluation of tea quality and tea germplasm resources. The metabolites from trichomes have been well characterized in tea products. However, little is known regarding the metabolites in fresh tea trichomes and the molecular differences in trichomes and tea leaves per se. In this study, we developed a method to collect trichomes from tea plant tender shoots, and their main secondary metabolites, including catechins, caffeine, amino acids, and aroma compounds, were determined. We found that the majority of these compounds were significantly less abundant in trichomes than in tea leaves. RNA-Seq was used to investigate the differences in the molecular regulatory mechanism between trichomes and leaves to gain further insight into the differences in trichomes and tea leaves. In total, 52.96 Gb of clean data were generated, and 6560 differentially expressed genes (DEGs), including 4471 upregulated and 2089 downregulated genes, were identified in the trichomes vs. leaves comparison. Notably, the structural genes of the major metabolite biosynthesis pathways, transcription factors, and other key DEGs were identified and comparatively analyzed between trichomes and leaves, while trichome-specific genes were also identified. Our results provide new insights into the differences between tea trichomes and leaves at the metabolic and transcriptomic levels, and open up new doors to further recognize and re-evaluate the role of trichomes in tea quality formation and tea plant growth and development.


Asunto(s)
Camellia sinensis/química , Camellia sinensis/metabolismo , Tricomas/metabolismo , Camellia sinensis/genética , Catequina/genética , Catequina/metabolismo , Flavonoides/química , Flavonoides/genética , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , , Factores de Transcripción/metabolismo , Transcriptoma/genética , Tricomas/química , Tricomas/genética
5.
Sci Rep ; 10(1): 2792, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066857

RESUMEN

The JASMONATE-ZIM DOMAIN (JAZ) family genes are key repressors in the jasmonic acid signal transduction pathway. Recently, the JAZ gene family has been systematically characterized in many plants. However, this gene family has not been explored in the tea plant. In this study, 13 CsJAZ genes were identified in the tea plant genome. Phylogenetic analysis showed that the JAZ proteins from tea and other plants clustered into 11 sub-groups. The CsJAZ gene transcriptional regulatory network predictive and expression pattern analyses suggest that these genes play vital roles in abiotic stress responses, phytohormone crosstalk and growth and development of the tea plant. In addition, the CsJAZ gene expression profiles were associated with tea postharvest processing. Our work provides a comprehensive understanding of the CsJAZ family and will help elucidate their contributions to tea quality during tea postharvest processing.


Asunto(s)
Proteínas de Arabidopsis/genética , Camellia sinensis/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas Represoras/genética , Estrés Fisiológico/genética , Arabidopsis/genética , Camellia sinensis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Familia de Multigenes/genética , Filogenia , Reguladores del Crecimiento de las Plantas
6.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627263

RESUMEN

C-repeat binding factors (CBFs) are key signaling genes that can be rapidly induced by cold and bind to the C-repeat/dehydration-responsive motif (CRT/DRE) in the promoter region of the downstream cold-responsive (COR) genes, which play a vital role in the plant response to low temperature. However, the CBF family in tea plants has not yet been elucidated, and the possible target genes regulated by this family under low temperature are still unclear. In this study, we identified five CsCBF family genes in the tea plant genome and analyzed their phylogenetic tree, conserved domains and motifs, and cis-elements. These results indicate that CsCBF3 may be unique in the CsCBF family. This is further supported by our findings from the low-temperature treatment: all the CsCBF genes except CsCBF3 were significantly induced after treatment at 4 °C. The expression profiles of eight tea plant tissues showed that CsCBFs were mainly expressed in winter mature leaves, roots and fruits. Furthermore, 685 potential target genes were identified by transcriptome data and CRT/DRE element information. These target genes play a functional role under the low temperatures of winter through multiple pathways, including carbohydrate metabolism, lipid metabolism, cell wall modification, circadian rhythm, calcium signaling, transcriptional cascade, and hormone signaling pathways. Our findings will further the understanding of the stress regulatory network of CsCBFs in tea plants.


Asunto(s)
Camellia sinensis/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencias de Aminoácidos , Sitios de Unión , Frío , Secuencia Conservada , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/fisiología , Estrés Fisiológico , Factores de Transcripción/química , Factores de Transcripción/fisiología
7.
Molecules ; 24(18)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533323

RESUMEN

Tea aroma is a key indicator for evaluating tea quality. Although notable success in tea aroma improvement has been achieved with heterosis breeding technology, the molecular basis underlying heterosis remains largely unexplored. Thus, the present report studies the tea plant volatile heterosis using a high-throughput next-generation RNA-seq strategy and gas chromatography-mass spectrometry. Phenotypically, we found higher terpenoid volatile and green leaf volatile contents by gas chromatography-mass spectrometry in the F1 hybrids than in their parental lines. Volatile heterosis was obvious in both F1 hybrids. At the molecular level, the comparative transcriptomics analysis revealed that approximately 41% (9027 of 21,995) of the genes showed non-additive expression, whereas only 7.83% (1723 of 21,995) showed additive expression. Among the non-additive genes, 42.1% showed high parental dominance and 17.6% showed over-dominance. Among different expression genes with high parental dominance and over-dominance expression patterns, KEGG and GO analyses found that plant hormone signal transduction, tea plant physiological process related pathways and most pathways associated with tea tree volatiles were enriched. In addition, we identified multiple genes (CsDXS, CsAATC2, CsSPLA2, etc.) and transcription factors (CsMYB1, CsbHLH79, CsWRKY40, etc.) that played important roles in tea volatile heterosis. Based on transcriptome and metabolite profiling, we conclude that non-additive action plays a major role in tea volatile heterosis. Genes and transcription factors involved in tea volatiles showing over-dominance expression patterns can be considered candidate genes and provide novel clues for breeding high-volatile tea varieties.


Asunto(s)
Camellia sinensis/genética , Camellia sinensis/metabolismo , Metaboloma , Transcriptoma , Compuestos Orgánicos Volátiles/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Vigor Híbrido , Metabolómica , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
8.
Planta ; 250(1): 281-298, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31025197

RESUMEN

MAIN CONCLUSION: The alpha-amylase and beta-amylase genes have been identified from tea plants, and their bioinformatic characteristics and expression patterns provide a foundation for further studies to elucidate their biological functions. Alpha-amylase (AMY)- and beta-amylase (BAM)-mediated starch degradation plays central roles in carbohydrate metabolism and participates extensively in the regulation of a wide range of biological processes, including growth, development and stress response. However, the AMY and BAM genes in tea plants (Camellia sinensis) are poorly understood, and the biological functions of these genes remain to be elucidated. In this study, three CsAMY and nine CsBAM genes from tea plants were identified based on genomic and transcriptomic database analyses, and the genes were subjected to comprehensive bioinformatic characterization. Phylogenetic analysis showed that the CsAMY proteins could be clustered into three different subfamilies, and nine CsBAM proteins could be classified into four groups. Putative catalytically active proteins were identified based on multiple sequence alignments, and the tertiary structures of these proteins were analyzed. Cis-element analysis indicated that CsAMY and CsBAM were extensively involved in tea plant growth, development and stress response. In addition, the CsAMY and CsBAM genes were differentially expressed in various tissues and were regulated by stress treatments (e.g., ABA, cold, drought and salt stress), and the expression patterns of these genes were associated with the postharvest withering and rotation processes. Taken together, our results will enhance the understanding of the roles of the CsAMY and CsBAM gene families in the growth, development and stress response of tea plants and of the potential functions of these genes in determining tea quality during the postharvest processing of tea leaves.


Asunto(s)
Camellia sinensis/enzimología , Regulación de la Expresión Génica de las Plantas , alfa-Amilasas/metabolismo , beta-Amilasa/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiología , Sequías , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Estrés Fisiológico , alfa-Amilasas/genética , beta-Amilasa/genética
9.
Genes Genomics ; 41(1): 17-33, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30238224

RESUMEN

The WRKY transcription factors (TFs) family is one of the largest TF families in plants and plays a central role in diverse regulation and multiple stress responses. However, the systematical analysis of the WRKY gene family in tea plant (Camellia sinensis) based on genomic data has been lacking. The primary objective of this study was to set a systematic analysis of the WRKY gene family based on genomic data in tea plant and analyze their expression profiles under various abiotic stresses. We searched the tea plant genome using the consensus model of the WRKY domain (PF03106) and then used these search results to identify all the WRKY family members by SMART and the CDD program. Analyze their phylogeny, classification, structure, conserved motifs, Cis-elements, interactors and expression profiles. 56 putative WRKY genes were identified from the tea plant genome and divided into three main groups (I-III) and five subgroups (IIa-IIe) according to the WRKY domains and the zinc-finger structure. The gene structure and conserved motifs of the CsWRKY genes were also characterized and were consistent with the classification results. Annotation analysis showed that 34 CsWRKY genes may be involved in stress responses. Promoter analysis implied that CsWRKY genes, except for CsWRKY55, possessed at least one abiotic stress response cis-element. Expression profiles of CsWRKY genes in different tissues were analyzed with RNA-seq data. The results showed that 56 CsWRKY genes had differential expression in their transcript abundance. The expression profiles also showed that many identified CsWRKY genes were possibly involved in the response to cold, drought, salt, or ABA treatment. Tea plant genome contains at least 56 WRKY genes. These results provide useful information for further exploring the function and regulatory mechanism of CsWRKY genes in the growth, development, and adaption to abiotic stresses in tea plant.


Asunto(s)
Camellia sinensis/genética , Proteínas de Plantas/genética , Estrés Fisiológico , Factores de Transcripción/genética , Genoma de Planta , Familia de Multigenes , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/metabolismo
10.
BMC Plant Biol ; 18(1): 228, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30309330

RESUMEN

BACKGROUND: Vacuolar invertases (VINs) have been reported to regulate plant growth and development and respond to abiotic stresses such as drought and cold. With our best knowledge, the functions of VIN genes little have been reported in tea plant (Camellia sinensis L.). Therefore, it is necessary to develop research in this field. RESULTS: Here, we identified a VIN gene, CsINV5, which was induced by cold acclimation and sugar treatments in the tea plant. Histochemical assays results showed that the 1154 bp 5'-flanking sequence of CsINV5 drove ß-glucuronidase (GUS) gene expression in roots, stems, leaves, flowers and siliques of transgenic Arabidopsis during different developmental stages. Moreover, promoter deletion analysis results revealed that an LTRE-related motif (CCGAAA) and a WBOXHVISO1 motif (TGACT) within the promoter region of CsINV5 were the core cis-elements in response to low temperature and sugar signaling, respectively. In addition, overexpression of CsINV5 in Arabidopsis promoted taproot and lateral root elongation through glucose-mediated effects on auxin signaling. Based on physiological and RNA-seq analysis, we found that overexpression of CsINV5 improved cold tolerance in transgenic Arabidopsis mainly by increasing the contents of glucose and fructose, the corresponding ratio of hexose to sucrose, and the transcription of osmotic-stress-related genes (P5CS1, P5CS2, AtLEA3, COR413-PM1 and COR15B) to adjust its osmotic potential. CONCLUSIONS: Comprehensive experimental results suggest that overexpression of CsINV5 may enhance the cold tolerance of plant through the modification of cellular sugar compounds contents and osmotic regulation related pathways.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Té/enzimología , beta-Fructofuranosidasa/metabolismo , Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , beta-Fructofuranosidasa/genética
11.
J Plant Physiol ; 229: 41-52, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30032044

RESUMEN

Trichome (also referred to as 'háo' in tea) is a key feature in both tea products and tea plant (Camellia sinensis) selection breeding. Although trichomes are used as a model for studying cell differentiation and have been well studied in many plant species, the regulation of trichome formation at the molecular level is poorly understood in tea plants. In the present study, the hairy and hairless tea plant cultivars Fudingdabaicha (FDDB) and Rongchunzao (RCZ), respectively, were used to study this mechanism. We characterised tea plant trichomes as unicellular and unbranched structures. High-throughput Illumina sequencing yielded approximately 277.0 million high-quality clean reads from the FDDB and RCZ cultivars. After de novo assembly, 161,444 unigenes were generated, with an average length of 937 bp. Among these unigenes, 81,425 were annotated using public databases, and 55,201 coding sequences and 4004 transcription factors (TFs) were identified. In total, 21,599 differentially expressed genes (DEGs) were identified between RCZ and FDDB, of which 10,785 DEGs were up-regulated and 10,814 DEGs were down-regulated. Genes involved in the DNA replication pathway were significantly enriched. Furthermore, between FDDB and RCZ, DEGs related to TFs, phytohormone signals, and cellulose synthesis were identified, suggesting that certain genes involved in these pathways are crucial for trichome initiation in tea plants. Together, the results of this study provide novel data to improve our understanding of the potential molecular mechanisms of trichome formation and lay a foundation for additional trichome studies in tea plants.


Asunto(s)
Camellia sinensis/genética , Brotes de la Planta/genética , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Tricomas/genética
12.
Plant Mol Biol ; 96(6): 577-592, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29616437

RESUMEN

KEY MESSAGE: Thirteen SWEET transporters were identified in Camellia sinensis and the cold-suppression gene CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. The sugars will eventually be exported transporters (SWEET) family of sugar transporters in plants is a recently identified protein family of sugar uniporters that contain seven transmembrane helices harbouring two MtN3 motifs. SWEETs play important roles in various biological processes, including plant responses to environmental stimuli. In this study, 13 SWEET transporters were identified in Camellia sinensis and were divided into four clades. Transcript abundances of CsSWEET genes were detected in various tissues. CsSWEET1a/1b/2a/2b/2c/3/9b/16/17 were expressed in all of the selected tissues, whereas the expression of CsSWEET5/7/9a/15 was not detected in some tissues, including those of mature leaves. Expression analysis of nine CsSWEET genes in leaves in response to abiotic stresses, natural cold acclimation and Colletotrichum camelliae infection revealed that eight CsSWEET genes responded to abiotic stress, while CsSWEET3 responded to C. camelliae infection. Functional analysis of 13 CsSWEET activities in yeast revealed that CsSWEET1a/1b/7/17 exhibit transport activity for glucose analogues and other types of hexose molecules. Further characterization of the cold-suppression gene CsSWEET16 revealed that this gene is localized in the vacuolar membrane. CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. Together, these findings demonstrate that CsSWEET genes play important roles in the response to abiotic and biotic stresses in tea plants and provide insights into the characteristics of SWEET genes in tea plants, which could serve as the basis for further functional identification of such genes.


Asunto(s)
Arabidopsis/genética , Camellia sinensis/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Aclimatación/genética , Secuencia de Aminoácidos , Transporte Biológico/genética , Frío , Colletotrichum/fisiología , Hexosas/metabolismo , Proteínas de Transporte de Membrana/clasificación , Familia de Multigenes/genética , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/clasificación , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido
13.
J Plant Physiol ; 224-225: 144-155, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29642051

RESUMEN

The tea plant originated in tropical and subtropical regions and experiences considerable challenges during cold winters and late spring frosts. After short-term chilling stress, young leaves of tea plants exhibit browning, a significant increase in electrolyte leakage and a marked decrease in the maximal photochemical efficiency of photosystem II (Fv/Fm) compared with mature leaves. To identify the mechanisms underlying the different chilling tolerance between young and mature leaves of the tea plant, we used Illumina RNA-Seq technology to analyse the transcript expression profiles of young and mature leaves exposed to temperatures of 20 °C, 4 °C, and 0 °C for 4 h. A total of 45.70-72.93 million RNA-Seq raw reads were obtained and then de novo assembled into 228,864 unigenes with an average length of 601 bp and an N50 of 867 bp. In addition, the differentially expressed unigenes were identified via Venn diagram analyses for paired comparisons of young and mature leaves. Functional classifications based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the up-regulated differentially expressed genes were predominantly related to the cellular component terms of chloroplasts and cell membranes, the biological process term of oxidation-reduction process as well as the pathway terms of glutathione metabolism and photosynthesis, suggesting that these components and pathways may contribute to the cold hardiness of mature leaves. Conversely, the inhibited expression of genes related to cell membranes, carotenoid metabolism, photosynthesis, and ROS detoxification in young leaves under cold conditions might lead to the disintegration of cell membranes and oxidative damage to the photosynthetic apparatus. Further quantitative real-time PCR testing validated the reliability of our RNA-Seq results. This work provides valuable information for understanding the mechanisms underlying the cold susceptibility of young tea plant leaves and for breeding tea cultivars with superior frost resistance via the genetic manipulation of antioxidant enzymes.


Asunto(s)
Camellia sinensis/fisiología , Frío , Proteínas de Plantas/genética , Transcripción Genética , Transcriptoma , Camellia sinensis/genética , Electrólitos/metabolismo , Fenotipo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo
14.
Tree Physiol ; 38(11): 1655-1671, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688561

RESUMEN

Green tea has attracted an increasing number of consumers worldwide due to its multiple health benefits. With the increase in global warming, more frequent cold spells in the spring often cause more serious damage to green tea production because of the young leaves used. We recorded the changes in climatic conditions during a typical cold spell and the damage symptoms caused by the cold spell in different tea cultivars and breeding lines. By simulating the low temperature of a cold spell under controlled conditions, comparative transcriptome and metabolic analyses were performed with sprouting shoots. Many pathways and genes were regulated differentially by the cold spell conditions. Taking into account the metabolic analysis, the results suggested that the mitogen-activated protein kinase (MAPK)-dependent ethylene and calcium signalling pathways were two major early cold-responsive mechanisms involved in sprouting shoots and were followed by the induction of the Inducer of CBF Expressions (ICE)-C-repeat binding factors (CBF)-cold-responsive (COR) signalling pathway to augment cold tolerance. During the cold shock, growth, photosynthesis and secondary metabolism-mainly involving flavonoid biosynthesis-were remarkably affected. Notably, the increased starch metabolism, which might be dependent on the high expression of ß-amylase3 (BAM3) induced by CBF, played crucial roles in protecting young shoots against freezing cold. A schematic diagram of cold spell response mechanisms specifically involved in the sprouting shoots of the tea plant is ultimately proposed. Some essential transcriptional and metabolic changes were further confirmed in the plant materials under natural cold spell conditions. Our results provide a global view of the reprograming of transcription and metabolism in sprouting tea shoots during a cold spell and meaningful information for future practices.


Asunto(s)
Camellia sinensis/fisiología , Frío , Brotes de la Planta/fisiología , Camellia sinensis/genética , Metaboloma/fisiología , Modelos Biológicos , Estrés Fisiológico , Transcriptoma/fisiología
15.
Plant Cell Rep ; 37(3): 425-441, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29214380

RESUMEN

KEY MESSAGE: Thirty genes involved in GA and ABA metabolism and signalling were identified, and the expression profiles indicated that they play crucial roles in the bud activity-dormancy transition in tea plants. Gibberellin (GA) and abscisic acid (ABA) are fundamental phytohormones that extensively regulate plant growth and development, especially bud dormancy and sprouting transition in perennial plants. However, there is little information on GA- and ABA-related genes and their expression profiles during the activity-dormancy transition in tea plants. In the present study, 30 genes involved in the metabolism and signalling pathways of GA and ABA were first identified, and their expression patterns in different tissues were assessed. Further evaluation of the expression patterns of selected genes in response to GA3 and ABA application showed that CsGA3ox, CsGA20ox, CsGA2ox, CsZEP and CsNCED transcripts were differentially expressed after exogenous treatment. The expression profiles of the studied genes during winter dormancy and spring sprouting were investigated, and somewhat diverse expression patterns were found for GA- and ABA-related genes. This diversity was associated with the bud activity-dormancy cycle of tea plants. These results indicate that the genes involved in the metabolism and signalling of GA and ABA are important for regulating the bud activity-dormancy transition in tea plants.


Asunto(s)
Ácido Abscísico/metabolismo , Camellia sinensis/genética , Perfilación de la Expresión Génica , Giberelinas/metabolismo , Meristema/genética , Latencia en las Plantas/genética , Ácido Abscísico/farmacología , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/metabolismo , Análisis por Conglomerados , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Especificidad de Órganos/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estaciones del Año , Transducción de Señal/genética ,
16.
BMC Plant Biol ; 17(1): 211, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29157225

RESUMEN

BACKGROUND: Drought stress is one of the major natural challenges in the main tea-producing regions of China. The tea plant (Camellia sinensis) is a traditional beverage plant whose growth status directly affects tea quality. Recent studies have revealed that microRNAs (miRNAs) play key functions in plant growth and development. Although some miRNAs have been identified in C. sinensis, little is known about their roles in the drought stress response of tea plants. RESULTS: Physiological characterization of Camellia sinensis 'Tieguanyin' under drought stress showed that the malondialdehyde concentration and electrical conductivity of leaves of drought-stressed plants increased when the chlorophyll concentration decreased under severe drought stress. We sequenced four small-RNA (sRNA) libraries constructed from leaves of plants subjected to four different treatments, normal water supply (CK); mild drought stress (T1); moderate drought stress (T2) and severe drought stress (T3). A total of 299 known mature miRNA sequences and 46 novel miRNAs were identified. Gene Ontology enrichment analysis revealed that most of the differentially expressed-miRNA target genes were related to regulation of transcription. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most highly enriched pathways under drought stress were D-alanine metabolism, sulfur metabolism, and mineral absorption pathways. Real-time quantitative PCR (qPCR) was used to validate the expression patterns of 21 miRNAs (2 up-regulated and 19 down-regulated under drought stress). The observed co-regulation of the miR166 family and their targets ATHB-14-like and ATHB-15-like indicate the presence of negative feedback regulation in miRNA pathways. CONCLUSIONS: Analyses of drought-responsive miRNAs in tea plants showed that most of differentially expressed-miRNA target genes were related to regulation of transcription. The results of study revealed that the expressions of phase-specific miRNAs vary with morphological, physiological, and biochemical changes. These findings will be useful for research on drought resistance and provide insights into the mechanisms of drought adaptation and resistance in C. sinensis.


Asunto(s)
Camellia sinensis/fisiología , MicroARNs/fisiología , Camellia sinensis/genética , Camellia sinensis/metabolismo , Clorofila/metabolismo , Deshidratación/fisiopatología , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Genes de Plantas/genética , Genes de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
17.
Plant Cell Rep ; 35(11): 2269-2283, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27538912

RESUMEN

KEY MESSAGE: Fourteen invertase genes were identified in the tea plant, all of which were shown to participate in regulating growth and development, as well as in responding to various abiotic stresses. Invertase (INV) can hydrolyze sucrose into glucose and fructose, which plays a principal role in regulating plant growth and development as well as the plants response to various abiotic and biotic stresses. However, currently, there is a lack of reported information, regarding the roles of INVs in either tea plant development or in the tea plants response to various stresses. In this study, 14 INV genes were identified from the transcriptome data of the tea plant (Camellia sinensis (L.) O. Kuntze), and named CsINV1-5 and CsINV7-15. Based on the results of a Blastx search and phylogenetic analysis, the CsINV genes could be clustered into 6 acid invertase (AI) genes and 8 alkaline/neutral invertase (A/N-Inv) genes. The results of tissue-specific expression analysis showed that the transcripts of all the identified CsINV genes are detectable in various tissues. Under various abiotic stress conditions, the expression patterns of the 14 CsINV genes were diverse in both the leaves and roots, and some of them were shown to be significantly expressed. Overall, we hypothesize that the identified CsINV genes all participate in regulating growth and development in the tea plant, and most likely through different signaling pathways that regulate the carbohydrate allocation and the ratio of hexose and sucrose for improving the resistance of the leaves and the roots of the tea plant to various abiotic stresses.


Asunto(s)
Camellia sinensis/enzimología , Camellia sinensis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Familia de Multigenes , Estrés Fisiológico/genética , beta-Fructofuranosidasa/genética , Secuencias de Aminoácidos , Camellia sinensis/fisiología , Secuencia Conservada/genética , Perfilación de la Expresión Génica , Especificidad de Órganos/genética , Filogenia , Dominios Proteicos , Factores de Tiempo , beta-Fructofuranosidasa/metabolismo
18.
J Proteomics ; 130: 160-9, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26344129

RESUMEN

To uncover the mechanisms that underlie the chlorina phenotype of the tea plant, this study employs morphological, biochemical, transcriptomic, and iTRAQ-based proteomic analyses to compare the green tea cultivar LJ43 and the yellow-leaf tea cultivar ZH1. ZH1 exhibited the chlorina phenotype, with significantly decreased chlorophyll content and abnormal chloroplast development compared with LJ43. ZH1 also displayed higher theanine and free amino acid content and lower carotenoid and catechin content. Microarray and iTRAQ analyses indicated that the differentially expressed genes and proteins could be mapped to the following pathways: 'phenylpropanoid biosynthesis,' 'glutathione metabolism,' 'phenylalanine metabolism,' 'photosynthesis,' and 'flavonoid biosynthesis.' Altered gene and protein levels in these pathways may account for the increased amino acid content and reduced chlorophyll and flavonoid content of ZH1. Altogether, this study combines transcriptomic and proteomic approaches to better understand the mechanisms responsible for the chlorina phenotype.


Asunto(s)
Clorofila/química , Proteoma/metabolismo , Té/metabolismo , Transcriptoma , Aminoácidos/química , Camellia sinensis/metabolismo , Carotenoides/química , Catequina/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glutamatos/química , Redes y Vías Metabólicas , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteómica
19.
Plant Physiol Biochem ; 97: 432-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26555901

RESUMEN

Basic leucine zipper (bZIP) transcription factors (TFs) play essential roles in regulating stress processes in plants. Despite the economic importance of this woody crop, there is little information about bZIP TFs in tea plants. In this study, 18 bZIP genes were isolated from the tea plant (Camellia sinensis) and named sequentially from CsbZIP1 to CsbZIP18. According to the phylogenetic classification as in Arabidopsis, the CsbZIP genes spanned ten subgroups (Group A, B, C, D, E, F, H, I, S and K) of bZIP TFs. When analyzed for organ specific expression, all CsbZIP genes were found to be ubiquitously expressed in roots, stems, leaves and flowers. Expression analysis of CsbZIP genes in response to four abiotic stresses showed that in leaves, 9, 9, 15 and 11 CsbZIPs have 2-fold greater variation in transcript abundance under cold, exogenous ABA, high salinity and dehydration conditions, respectively. In roots, 5, 12, 14 and 11 CsbZIPs were differentially expressed under conditions of cold, exogenous ABA, high salinity and dehydration stresses. Moreover, CsbZIP genes in Groups F, H, S and K exhibited several folds up-and/or down-regulation against the above four stresses. Notably, CsbZIP18 of group K showed significant up-regulation in response to these same stresses, suggesting a vital functional role in stress response. Together, these findings increase our knowledge of bZIP TFs in the tea plant and suggest the significance of CsbZIP genes in plant abiotic responses.


Asunto(s)
Camellia sinensis/genética , Camellia sinensis/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estrés Fisiológico/genética , Ácido Abscísico/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Camellia sinensis/efectos de los fármacos , Frío , Secuencia Conservada , Deshidratación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidad , Estrés Fisiológico/efectos de los fármacos
20.
Plant Mol Biol ; 88(6): 591-608, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26216393

RESUMEN

Sugar plays an essential role in plant cold acclimation (CA), but the interaction between CA and sugar remains unclear in tea plants. In this study, during the whole winter season, we investigated the variations of sugar contents and the expression of a large number of sugar-related genes in tea leaves. Results indicated that cold tolerance of tea plant was improved with the development of CA during early winter season. At this stage, starch was dramatically degraded, whereas the content of total sugars and several specific sugars including sucrose, glucose and fructose were constantly elevated. Beyond the CA stage, the content of starch was maintained at a low level during winter hardiness (WH) period and then was elevated during de-acclimation (DC) period. Conversely, the content of sugar reached a peak at WH stage followed by a decrease during DC stage. Moreover, gene expression results showed that, during CA period, sugar metabolism-related genes exhibited different expression pattern, in which beta-amylase gene (CsBAM), invertase gene (CsINV5) and raffinose synthase gene (CsRS2) engaged in starch, sucrose and raffinose metabolism respectively were solidly up-regulated; the expressions of sugar transporters were stimulated in general except the down-regulations of CsSWEET2, 3, 16, CsERD6.7 and CsINT2; interestingly, the sugar-signaling related CsHXK3 and CsHXK2 had opposite expression patterns at the early stage of CA. These provided comprehensive insight into the effects of CA on carbohydrates indicating that sugar accumulation contributes to tea plant cold tolerance during winter season, and a simply model of sugar regulation in response to cold stimuli is proposed.


Asunto(s)
Aclimatación/fisiología , Camellia sinensis/fisiología , Metabolismo de los Hidratos de Carbono/fisiología , Frío , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estaciones del Año , Transducción de Señal/fisiología , Factores de Tiempo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA