Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Brain Res ; 241(2): 517-526, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36611123

RESUMEN

Sound-induced flash illusion (SiFI) is an auditory-dominated audiovisual integration phenomenon that can be used as a reliable indicator of audiovisual integration. Although previous studies have found that Tai Chi exercise has a promoting effect on cognitive processing, such as executive functions, the effect of Tai Chi exercise on early perceptual processing has yet to be investigated. This study used the classic SiFI paradigm to investigate the effects of long-term Tai Chi exercise on multisensory integration in older adults. We compared older adults with long-term Tai Chi exercise experience with those with long-term walking exercise. The results showed that the accuracy of the Tai Chi group was higher than that of the control group under the fusion illusion condition, mainly due to the increased perceptual sensitivity to flashes. However, there was no significant difference between the two groups in the fission illusion. These results indicated that the fission and fusion illusions were affected differently by Tai Chi exercise, and this was attributable to the association of the participants' flash discriminability with them. The present study provides preliminary evidence that long-term Tai Chi exercise improves older adults' multisensory integration, which occurs in early perceptual processing.


Asunto(s)
Ilusiones , Taichi Chuan , Humanos , Anciano , Percepción Visual , Estimulación Acústica/métodos , Percepción Auditiva , Estimulación Luminosa/métodos
2.
Front Aging Neurosci ; 12: 586770, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192481

RESUMEN

OBJECTIVE: The current study aimed at comparing the effects of Tai Chi (a motor-cognitive exercise) with walking (an exercise without cognitive demands) on cognitive performance, brain structure, and brain function in the elderly. METHODS: This cross-sectional study included 42 healthy elderly women within two groups: Tai Chi (n = 20; mean age = 62.90 ± 2.38 years) and brisk walking exercise (n = 22; mean age = 63.27 ± 3.58 years). All the participants underwent a cognitive assessment via the Montreal Cognitive Assessment and brain structural and resting state functional magnetic resonance imaging (rsfMRI) assessments. RESULTS: Episodic memory in the Tai Chi group was superior to that of the walking group. Higher gray matter density in the inferior and medial temporal regions (including the hippocampus) and higher ReHo in temporal regions (specifically the fusiform gyrus and hippocampus) were found in the Tai Chi group. Significant partial correlations were found between the gray matter density of the left hippocampus and episodic memory in the whole sample. Significant partial correlations were observed between the ReHo in left hippocampus, left parahippocampal, left fusiform, and delayed memory task, which was observed among all subjects. CONCLUSION: The present study suggests that long-term Tai Chi practice may improve memory performance via remodeling the structure and function of the hippocampus.

3.
Healthcare (Basel) ; 8(1)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213980

RESUMEN

Background: This cross-sectional study aimed to investigate whether a long-term engagement in different types of physical exercise may influence resting-state brain networks differentially. In particular, we studied if there were differences in resting-state functional connectivity measures when comparing older women who are long-term practitioners of tai chi chuan or walking. Method: We recruited 20 older women who regularly practiced tai chi chuan (TCC group), and 22 older women who walked regularly (walking group). Both the TCC group and the walking group underwent a resting-state functional magnetic resonance imaging (rs-fMRI) scan. The acquired rs-fMRI data of all participants were analyzed using independent component analysis. Age and years of education were added as co-variables. Results: There were significant differences in default network, sensory-motor network, and visual network of rs-fMRI between the TCC group and walking group (p < 0.05). Conclusions: The findings of the current study suggested that long-term practice of different types of physical exercises (TCC vs. walking) influenced brain functional networks and brain functional plasticity of elderly women differentially. Our findings encourage further research to investigate whether those differences in resting-state functional connectivity as a function of the type of physical exercise have implications for the prevention of neurological diseases.

4.
Healthcare (Basel) ; 8(1)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182844

RESUMEN

Background: Cognitive decline is age relevant and it can start as early as middle age. The decline becomes more obvious among older adults, which is highly associated with increased risk of developing dementia (e.g., Alzheimer's disease). White matter damage was found to be related to cognitive decline through aging. The purpose of the current study was to compare the effects of Tai Chi (TC) versus walking on the brain white matter network among Chinese elderly women. Methods: A cross-sectional study was conducted where 42 healthy elderly women were included. Tai Chi practitioners (20 females, average age: 62.9 ± 2.38 years, education level 9.05 ± 1.8 years) and the matched walking participants (22 females, average age: 63.27 ± 3.58 years, educational level: 8.86 ± 2.74 years) underwent resting-state functional magnetic resonance imaging (rsfMRI) scans. Diffusion tensor imaging (DTI) and graph theory were employed to study the data, construct the white matter matrix, and compare the brain network attributes between the two groups. Results: Results from graph-based analyses showed that the small-world attributes were higher for the TC group than for the walking group (p < 0.05, Cohen's d = 1.534). Some effects were significant (p < 0.001) with very large effect sizes. Meanwhile, the aggregation coefficient and local efficiency attributes were also higher for the TC group than for the walking group (p > 0.05). However, no significant difference was found between the two groups in node attributes and edge analysis. Conclusion: Regular TC training is more conducive to optimize the brain functioning and networking of the elderly. The results of the current study help to identify the mechanisms underlying the cognitive protective effects of TC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA