Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 107(5): 1466-1477, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34174125

RESUMEN

Rubus chingii Hu (Fu-Pen-Zi), a perennial woody plant in the Rosaceae family, is a characteristic traditional Chinese medicinal plant because of its unique pharmacological effects. There are abundant hydrolyzable tannin (HT) components in R. chingii that provide health benefits. Here, an R. chingii chromosome-scale genome and related functional analysis provide insights into the biosynthetic pathway of HTs. In total, sequence data of 231.21 Mb (155 scaffolds with an N50 of 8.2 Mb) were assembled into seven chromosomes with an average length of 31.4 Mb, and 33 130 protein-coding genes were predicted, 89.28% of which were functionally annotated. Evolutionary analysis showed that R. chingii was most closely related to Rubus occidentalis, from which it was predicted to have diverged 22.46 million years ago (Table S8). Comparative genomic analysis showed that there was a tandem gene cluster of UGT, carboxylesterase (CXE) and SCPL genes on chromosome 02 of R. chingii, including 11 CXE, eight UGT, and six SCPL genes, which may be critical for the synthesis of HTs. In vitro enzyme assays indicated that the proteins encoded by the CXE (LG02.4273) and UGT (LG02.4102) genes have tannin hydrolase and gallic acid glycosyltransferase functions, respectively. The genomic sequence of R. chingii will be a valuable resource for comparative genomic analysis within the Rosaceae family and will be useful for understanding the biosynthesis of HTs.


Asunto(s)
Vías Biosintéticas , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Taninos Hidrolizables/metabolismo , Rubus/genética , Evolución Molecular , Genómica , Familia de Multigenes , Rubus/metabolismo
2.
Sci Rep ; 8(1): 13414, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194355

RESUMEN

Chrysanthemum morifolium is an ornamentally and medicinally important plant species. Up to date, molecular and genetic investigations have largely focused on determination of flowering time in the ornamental species. However, little is known about gene regulatory networks for the biosynthesis of flavonoids in the medicinal species. In the current study, we employed the high-throughput sequencing technology to profile the genome-wide transcriptome of C. morifolium 'Chuju', a famous medicinal species in traditional Chinese medicine. A total of 63,854 unigenes with an average length of 741 bp were obtained. Bioinformatic analysis has identified a great number of structural and regulatory unigenes potentially participating in the flavonoid biosynthetic pathway. According to the comparison of digital gene expression, 8,370 (3,026 up-regulated and 5,344 down-regulated), 1,348 (717 up-regulated and 631 down-regulated) and 944 (206 up-regulated and 738 down-regulated) differentially expressed unigenes (DEUs) were detected in the early, middle and mature growth phases, respectively. Among them, many DEUs were implicated in controlling the biosynthesis and composition of flavonoids from the budding to full blooming stages during flower development. Furthermore, the expression patterns of 12 unigenes involved in flavonoid biosynthesis were generally validated by using quantitative real time PCR. These findings could shed light on the molecular basis of flavonoid biosynthesis in C. morifolium 'Chuju' and provide a genetic resource for breeding varieties with improved nutritional quality.


Asunto(s)
Chrysanthemum/genética , Flavonoides/biosíntesis , Flores/crecimiento & desarrollo , Transcriptoma , Chrysanthemum/crecimiento & desarrollo , Chrysanthemum/metabolismo , Flavonoides/genética , Flores/genética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA