Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Elife ; 122023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37334968

RESUMEN

Highly concentrated antibody formulations are oftentimes required for subcutaneous, self-administered biologics. Here, we report the development of a unique formulation for our first-in-class FSH-blocking humanized antibody, MS-Hu6, which we propose to move to the clinic for osteoporosis, obesity, and Alzheimer's disease. The studies were carried out using our Good Laboratory Practice (GLP) platform, compliant with the Code of Federal Regulations (Title 21, Part 58). We first used protein thermal shift, size exclusion chromatography, and dynamic light scattering to examine MS-Hu6 concentrations between 1 and 100 mg/mL. We found that thermal, monomeric, and colloidal stability of formulated MS-Hu6 was maintained at a concentration of 100 mg/mL. The addition of the antioxidant L-methionine and chelating agent disodium EDTA improved the formulation's long-term colloidal and thermal stability. Thermal stability was further confirmed by Nano differential scanning calorimetry (DSC). Physiochemical properties of formulated MS-Hu6, including viscosity, turbidity, and clarity, confirmed with acceptable industry standards. That the structural integrity of MS-Hu6 in formulation was maintained was proven through Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) Spectroscopy. Three rapid freeze-thaw cycles at -80 °C/25 °C or -80 °C/37 °C further revealed excellent thermal and colloidal stability. Furthermore, formulated MS-Hu6, particularly its Fab domain, displayed thermal and monomeric storage stability for more than 90 days at 4°C and 25°C. Finally, the unfolding temperature (Tm) for formulated MS-Hu6 increased by >4.80 °C upon binding to recombinant FSH, indicating highly specific ligand binding. Overall, we document the feasibility of developing a stable, manufacturable and transportable MS-Hu6 formulation at a ultra-high concentration at industry standards. The study should become a resource for developing biologic formulations in academic medical centers.


Asunto(s)
Anticuerpos Monoclonales , Hormona Folículo Estimulante , Anticuerpos Monoclonales/química , Temperatura , Rastreo Diferencial de Calorimetría , Viscosidad , Estabilidad Proteica
2.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214886

RESUMEN

Highly concentrated antibody formulations are oftentimes required for subcutaneous, self-administered biologics. Here, we report the creation of a unique formulation for our first-in- class FSH-blocking humanized antibody, MS-Hu6, which we propose to move to the clinic for osteoporosis, obesity, and Alzheimer's disease. The studies were carried out using our Good Laboratory Practice (GLP) platform, compliant with the Code of Federal Regulations (Title 21, Part 58). We first used protein thermal shift, size exclusion chromatography, and dynamic light scattering to examine MS-Hu6 concentrations between 1 and 100 mg/mL. We found that thermal, monomeric, and colloidal stability of formulated MS-Hu6 was maintained at a concentration of 100 mg/mL. The addition of the antioxidant L-methionine and chelating agent disodium EDTA improved the formulation's long-term colloidal and thermal stability. Thermal stability was further confirmed by Nano differential scanning calorimetry (DSC). Physiochemical properties of formulated MS-Hu6, including viscosity, turbidity, and clarity, conformed with acceptable industry standards. That the structural integrity of MS-Hu6 in formulation was maintained was proven through Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. Three rapid freeze-thaw cycles at -80°C/25°C or -80°C/37°C further revealed excellent thermal and colloidal stability. Furthermore, formulated MS-Hu6, particularly its Fab domain, displayed thermal and monomeric storage stability for more than 90 days at 4°C and 25°C. Finally, the unfolding temperature (T m ) for formulated MS-Hu6 increased by >4.80°C upon binding to recombinant FSH, indicating highly specific ligand binding. Overall, we document the feasibility of developing a stable, manufacturable and transportable MS-Hu6 formulation at a ultra-high concentration at industry standards. The study should become a resource for developing biologic formulations in academic medical centers.

3.
Ann N Y Acad Sci ; 1525(1): 61-69, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37199228

RESUMEN

Seasonal changes in food intake and adiposity in many animal species are triggered by changes in the photoperiod. These latter changes are faithfully transduced into a biochemical signal by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface between the neural networks of the central nervous system and the periphery to control metabolic functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells involved in the regulation of energy balance and the blood-hypothalamus barrier (BHB) plasticity are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, traditionally considered to have unitary functions in targeting single endocrine sites, display actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be proven.


Asunto(s)
Melatonina , Animales , Melatonina/fisiología , Células Ependimogliales/metabolismo , Hipotálamo/fisiología , Encéfalo/metabolismo , Tirotropina/metabolismo , Estaciones del Año , Homeostasis
4.
PLoS One ; 7(10): e47058, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056580

RESUMEN

Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, we show that the ingestion of vitamin C prevents the low-turnover bone loss following ovariectomy in mice. We show that this prevention in areal bone mineral density and micro-CT parameters results from the stimulation of bone formation, demonstrable in vivo by histomorphometry, bone marker measurements, and quantitative PCR. Notably, the reductions in the bone formation rate, plasma osteocalcin levels, and ex vivo osteoblast gene expression 8 weeks post-ovariectomy are all returned to levels of sham-operated controls. The study establishes vitamin C as a skeletal anabolic agent.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Densidad Ósea/efectos de los fármacos , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Osteoporosis/diagnóstico por imagen , Osteoporosis/prevención & control , Ovariectomía , Radiografía
5.
Methods ; 31(4): 306-16, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14597315

RESUMEN

We describe detailed protocols and results with an integrated platform for studying relative transcript expression, including microarray design and fabrication, analysis and calibration algorithms, and high throughput quantitative real-time PCR. This approach optimizes sensitivity and accuracy while controlling the cost of experiments. A high quality cDNA array was fabricated using a restricted number of carefully selected transcripts with each clone printed in triplicate. This focused array facilitated both repeated measurement and replicate experiments. Following normalization and differential expression analysis, we found that experiments with this array identified differentially expressed transcripts with a high degree of accuracy and with high sensitivity to low levels of differential expression. Using a calibration algorithm improved the accuracy of the array in quantifying the relative level of transcript expression. All differentially expressed transcripts identified by the array were independently tested using high throughput quantitative real-time PCR assays. This approach reliably identified transcripts having as low as 1.3-fold differences in transcript expression between RNA samples from treatment- and control groups and was applicable to highly heterogenous tissue sources such as hypothalamus and cerebral cortex.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Calibración , Línea Celular , Hipotálamo/fisiología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Corteza Somatosensorial/fisiología , Transcripción Genética
6.
Neurochem Res ; 27(10): 1027-33, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12462402

RESUMEN

Microarray-based genomic techniques allow the simultaneous determination of relative levels of expression of a large number of genes. Studies of the transcriptome in complex neurobiological systems are uniquely demanding due to the heterogeneous nature of these cells. Most brain regions contain a large variety of cell populations that are closely intermingled. The expression of any specific gene may be restricted to a subpopulation of cells, and changes in gene expression may occur in only a small fraction of the cells expressing that transcript. Due to this dilution effect, many genes of interest are expected to have relatively low levels of expression in tissue homogenates. Furthermore, biologically significant differences in expression may result in only small fold-changes. Therefore genomic approaches using brain dissections must be optimized to identify potentially regulated transcripts and differential expression should be confirmed using quantitative assays. We evaluated the effects of increasing tissue complexity on detection of regulated transcripts in focused microarray studies using a mouse cell line, mouse hypothalamus and mouse cortex. Regulated transcripts were confirmed by quantitative real-time PCR. As tissue complexity increased, distinguishing significantly regulated genes from background variation became increasingly more difficult. However, we found that cDNA microarray studies using regional brain dissections and appropriate numbers of replicates could identify genes showing less than 2-fold regulation and that most regulated genes identified fell within this range.


Asunto(s)
Expresión Génica , Técnicas Genéticas , Genoma , Animales , Línea Celular , Sistemas de Computación , Disección , Regulación de la Expresión Génica , Hipotálamo/fisiología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Corteza Somatosensorial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA