Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 299(1): 102726, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410438

RESUMEN

The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.


Asunto(s)
Proteínas , Proteómica , Biotinilación , Poro Nuclear , Proteínas/química , Proteómica/métodos , Estreptavidina/química
2.
J Pharm Pharm Sci ; 13(3): 320-35, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21092706

RESUMEN

PURPOSE: Leishmaniasis is a major health problem in many tropical and sub-tropical countries and development of a safe and easily-available vaccine has high priority. Although several antigens potentially capable of inducing protective immunity have been studied, in the absence of pharmaceutical industry interest they have remained as fine publications only. Amongst them, Cathepsin L-like cysteine proteinases (CPs) have received considerable attention and type I and II CPs have been used in a heterologous prime-boost vaccination regime for experimental visceral leishmaniasis in dogs. Due to the promising results of the mentioned vaccination regime, we aimed to evaluate cationic solid lipid nanoparticles (cSLNs) for in vitro delivery of cpa, cpb and cpb(CTE) intended to be used as a cocktail DNA vaccine in our forthcoming studies. METHODS: cSLNs were formulated of cetyl palmitate, cholesterol, DOTAP and Tween 80 via melt emulsification method followed by high shear homogenization. Different formulations were prepared by anchoring pDNAs on the surface of cSLNs via charge interaction. The formulations were characterized according to their size and zeta potential as well as pDNA integrity and stability against DNase I treatment. Lipoplexes' cytotoxicity was investigated on COS-7 cells by MTT test. The effect of the DOTAP:pDNA ratio on protection ability and cytotoxicity was also studied. In vitro transfection efficiency was qualified by fluorescent microscopy and quantified using flow cytometry technique. RESULTS: cSLN-pDNA complexes were formulated with suitable size and zeta potential. Efficiency/cytotoxicity ratio of cSLN-pDNAs formulations was comparable to linear PEI-25KD-pDNAs polyplexes while exhibiting significantly lower cytotoxicity. CONCLUSION: Tested formulations were able to deliver immunogenic CP genes efficiently. This data proves the ability of this system as a promising DNA vaccine carrier for leishmaniasis to cover the main drawback of naked pDNA delivery that is rapid elimination from the circulation.


Asunto(s)
Proteasas de Cisteína/genética , Leishmaniasis/prevención & control , Nanopartículas , Vacunas de ADN/administración & dosificación , Animales , Células COS , Cationes , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Proteasas de Cisteína/metabolismo , Perros , Evaluación Preclínica de Medicamentos , Excipientes , Formazáns , Proteínas Fluorescentes Verdes/genética , Leishmaniasis/metabolismo , Lípidos , Nanopartículas/administración & dosificación , Nanopartículas/análisis , Plásmidos , Sales de Tetrazolio , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA