Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 158(2): 262-281, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33837559

RESUMEN

Tissue accumulation and high urinary excretion of ethylmalonic acid (EMA) are found in ethylmalonic encephalopathy (EE), an inherited disorder associated with cerebral and cerebellar atrophy whose pathogenesis is poorly established. The in vitro and in vivo effects of EMA on bioenergetics and redox homeostasis were investigated in rat cerebellum. For the in vitro studies, cerebellum preparations were exposed to EMA, whereas intracerebellar injection of EMA was used for the in vivo evaluation. EMA reduced state 3 and uncoupled respiration in vitro in succinate-, glutamate-, and malate-supported mitochondria, whereas decreased state 4 respiration was observed using glutamate and malate. Furthermore, mitochondria permeabilization and succinate supplementation diminished the decrease in state 3 with succinate. EMA also inhibited the activity of KGDH, an enzyme necessary for glutamate oxidation, in a mixed manner and augmented mitochondrial efflux of α-ketoglutarate. ATP levels were markedly reduced by EMA, reflecting a severe bioenergetic disruption. Docking simulations also indicated interactions between EMA and KGDH and a competition with glutamate and succinate for their mitochondrial transporters. In vitro findings also showed that EMA decreased mitochondrial membrane potential and Ca2+ retention capacity, and induced swelling in the presence of Ca2+ , which were prevented by cyclosporine A and ADP and ruthenium red, indicating mitochondrial permeability transition (MPT). Moreover, EMA, at high concentrations, mildly increased ROS levels and altered antioxidant defenses in vitro and in vivo. Our data indicate that EMA-induced impairment of glutamate and succinate oxidation and MPT may contribute to the pathogenesis of the cerebellum abnormalities in EE.


Asunto(s)
Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Metabolismo Energético/efectos de los fármacos , Glutamatos/metabolismo , Malonatos/toxicidad , Poro de Transición de la Permeabilidad Mitocondrial , Succinatos/metabolismo , Animales , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Succinatos/farmacología
2.
Br J Nutr ; 123(10): 1117-1126, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32077406

RESUMEN

The study of polyphenols' effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring's cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student's t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring's cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.


Asunto(s)
Cerebelo/enzimología , Ciclo del Ácido Cítrico/efectos de los fármacos , Suplementos Dietéticos , Flavanonas/administración & dosificación , Fenómenos Fisiologicos Nutricionales Maternos , Animales , Citrato (si)-Sintasa/efectos de los fármacos , Femenino , Isocitrato Deshidrogenasa/efectos de los fármacos , Complejo Cetoglutarato Deshidrogenasa/efectos de los fármacos , Malato Deshidrogenasa/efectos de los fármacos , Simulación del Acoplamiento Molecular , Embarazo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA