Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 119: 154989, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506574

RESUMEN

BACKGROUND: Depression is a debilitating condition that affects the mind and the individual's body. The improving effects of saffron on depression and anxiety have long been discussed, with limited information about the molecular mechanism of action. HYPOTHESIS/PURPOSE: Investigating the effect of saffron carotenoids, Crocin and Crocetin, on depression and anxiety in rats by emphasizing some signaling pathways involved. STUDY DESIGN: Depression and anxiety were induced in rats via unpredictable chronic mild stress (UCMS). Then different rat groups were treated with Crocin, Crocetin, Fluoxetine, and vehicle. Behavioral tests were done before and after treatment. METHODS: The serum Serotonin and Corticosterone and the expression of some hippocampal signaling proteins were studied. Furthermore, bioinformatics tools were used to predict the interactions of Crocin/ Crocetin with the Serotonin transporter and NMDA receptor subunit NR2B. Then, the patch-clamp was used to study the interaction of Crocetin with the NMDA receptor. RESULTS: Various behavioral tests confirmed the induction of depression and the improvement of depression by these natural carotenoids. In addition, Crocin/ Crocetin significantly increased the decreased serum Serotonin and reduced the increased serum Corticosterone in the depressed groups. They also increased or caused a trend of increase in the CREB, ERK, BAD, BDNF, p11, and 5-HT1B expression in the hippocampus of the depressed groups. In addition, there were an increase or a trend in p-CREB/CREB, p-ERK1/2 /ERK1/2, and p-BAD/BAD ratios in the Crocin/ Crocetin treated depressed groups. However, the NR2B and FOXO3a expression showed a trend of decrease in depressed groups after treatment. The bioinformatics data indicated that Crocin/ Crocetin could bind to the Serotonin transporter (SLC6A4) and NR2B subunit of the NMDA receptor. Both carotenoids bind to the same site as Fluoxetine in the SLC6A4. However, they bound to different sites on the NR2B. So, Crocetin binds to NR2B at the same site as Ifenprodil. But Crocin bound to another site. The whole cell patch-clamp recording on the normal rat hippocampus revealed a significant decrease in the NMDA peak amplitude after Crocetin treatment, indicating its inhibitory effect on this receptor. CONCLUSION: The antidepressant activities of Crocin/ Crocetin are possibly due to their effects on Serotonin and Corticosterone serum concentrations, NR2B expression, and the downstream signaling pathways. Furthermore, these natural carotenoids, like Fluoxetine, induced an increasing tendency in p11 and 5HT1B in depressed rats.


Asunto(s)
Crocus , Depresión , Ratas , Animales , Depresión/tratamiento farmacológico , Crocus/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Corticosterona , Fluoxetina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Serotonina/metabolismo , Carotenoides/farmacología , Hipocampo/metabolismo , Ansiedad/tratamiento farmacológico
2.
J Tissue Eng Regen Med ; 14(10): 1449-1464, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32750189

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease, associated with central nervous system (CNS) inflammation, demyelination, and axonal loss. Myelin, a multilayer membranous that covers nerve fibers, is essential for rapid impulse conduction. Oligodendrocytes that are generated either from CNS-resident oligodendrocyte progenitor cells (OPCs) or subventricular zone-derived neural stem cells (NSCs) are the myelinating cells of the CNS. The adult CNS maintains a certain endogenous potential to repair myelin damage. However, this process often fails as MS progresses. The origin of this failure is not fully understood, but it is likely to relate to progenitors/stem cells' arrestment in a quiescent state, incapable of generating new oligodendrocyte. Current treatments for MS are immunomodulatory or immunosuppressive medications, with little to no effect on myelin restoration. Recent studies have provided proof-of-principle that CNS remyelination can be promoted either via enhancing endogenous remyelination or by transplanting myelinating cells. Curcumin, a natural polyphenolic compound, has been shown to have therapeutic properties in several neurodegenerative diseases. Here, we investigated the effect of a curcumin nanoformulation, dendrosomal nanoparticles (DNC) on oligodendrogenesis and remyelination, both in vitro and in animal model of demyelination. We indicated that DNC enhanced oligodendrogenesis from NSCs and OPCs, in vitro in dose dependent manner. DNC also induced in vivo remyelination via promotion of oligodendrogenesis. Furthermore, DNC enhanced remyelination capacity of transplanted NSCs through promoting their survival and oligodendrogenesis capacity. Our findings suggest that DNC has significant beneficial effects in demyelinating conditions, either as mono-therapy or as being paired with transplantation approaches.


Asunto(s)
Curcumina/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Nanopartículas/química , Neurogénesis , Oligodendroglía/metabolismo , Remielinización/efectos de los fármacos , Enfermedad Aguda , Animales , Astrocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Enfermedad Crónica , Cuprizona , Curcumina/farmacología , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Embrión de Mamíferos/citología , Masculino , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/trasplante , Neurogénesis/efectos de los fármacos , Oligodendroglía/efectos de los fármacos
3.
J Ethnopharmacol ; 141(3): 901-7, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22472107

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginger (Zingiber officinale Roscoe), a well-known spice plant, has been used traditionally in the treatment of a wide variety of ailments such as opiates withdrawal-induced disorders. However, its influences on opioid tolerance and dependence have not yet been clarified. MATERIALS AND METHODS: Adult male Wistar rats were rendered tolerant to analgesic effect of morphine by injection of morphine (10 mg/kg, i.p.) twice daily for 8 days. To develop morphine dependence, rats given escalating doses of chronic morphine. To determine the effect of ginger on the development of morphine tolerance and dependence, different doses of ginger were administrated before morphine. The tail-flick and naloxone precipitation tests were used to assess the degree of tolerance and dependence, respectively. RESULTS: Our results showed that chronic morphine-injected rats displayed tolerance to the analgesic effect of morphine as well as morphine dependence. Ginger (50 and 100 mg/kg) completely prevented the development of morphine tolerance. In addition, concomitant treatment of morphine with 100 and 150 mg/kg attenuated almost all of the naloxone-induced withdrawal sings which include weight lose, abdominal contraction, diarrhea, petosis, teeth chattering, and jumping. In addition, morphine-induced L-type calcium channel over-expression in spinal cord was reversed by 100 mg/kg ginger. CONCLUSION: The data indicate that ginger extract has a potential anti-tolerant/anti-dependence property against chronic usage of morphine.


Asunto(s)
Tolerancia a Medicamentos , Dependencia de Morfina/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Zingiber officinale , Analgésicos Opioides , Animales , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Etanol/química , Expresión Génica/efectos de los fármacos , Masculino , Morfina , Naloxona/farmacología , Dolor/fisiopatología , Raíces de Plantas , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
4.
Phytother Res ; 26(11): 1731-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22422486

RESUMEN

It has been shown that blockade of L-type calcium channels could abolish the development of opioid-induced antinociceptive tolerance. Here, the antitolerant effects of olive leaf extract (OLE) and its main component, oleuropein, which have a calcium channel blocker property were determined. Adult male Wistar rats were injected with morphine (20 mg/kg, i.p.) for 8 days to induce antinociceptive tolerance. Then OLE (50-200 mg/kg i.g.) and oleuropein (1-10 mg/kg i.p.) were injected concomitantly with morphine. The tail-flick test was used to assess the nociceptive threshold. The dorsal half of the lumbar spinal cord was assayed for the expression of L-type calcium channel using semiquantitative RT-PCR. The results showed that OLE (200 mg/kg) completely prevented morphine tolerance development. In addition, oleuropein in dose of 10 mg/kg, but not in 5 mg/kg, prevented the development of morphine antinociceptive tolerance. In addition, a significant increase in the mRNA levels of calcium channel (43.9%) was observed in the lumbar spinal cord of tolerant animals, which was reversed by effective of dose OLE. In conclusion, the results indicate that olive leaf extract has a potential antitolerant property against the chronic usage of morphine and that its main component, oleuropein, is responsible for such effect.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Tolerancia a Medicamentos , Morfina/farmacología , Piranos/farmacología , Analgésicos Opioides/farmacología , Animales , Glucósidos Iridoides , Iridoides , Masculino , Olea/química , Dimensión del Dolor , Extractos Vegetales/farmacología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA