Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Eur J Pharm Sci ; 191: 106600, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37802230

RESUMEN

Chemotherapy agents often exhibit limited effectiveness due to their fast elimination from the body and non-targeted delivery. Emerging nanomaterials as drug delivery carriers open new expectancy to overcome these limitations in current chemotherapeutic treatments. In this study, we introduce and evaluate a smart pH-responsive niosomal formulation capable of delivering Doxorubicin (DOX) and Curcumin (CUR) in both individually and co-loaded forms. In particular, drug-loaded niosomes were prepared using thin-film hydration method and then characterized via different physicochemical analyses. The pH responsivity of the carrier was assessed by performing a drug release study in three different pH conditions (4, 6.5, and 7.4). Finally, the anticancer efficacy of the therapeutic compounds was evaluated through the MTT assay. Our results showed spherical particles with a size of about 200 nm and -2 mV surface charge. Encapsulation efficiency (EE%) of the nanocarrier was about 77.06 % and 79.08 % for DOX and CUR, respectively. The release study confirmed the pH responsivity of the carrier. The MTT assay results revealed about 39 % and 43 % of cell deaths after treatment with cur-loaded and dox-loaded niosomes, which increased to 74 % and 79 % after co-administration and co-loading forms of drugs, respectively, exhibiting increased anticancer efficacy by selectively delivering DOX and CUR individually or in combination. Overall, these findings suggest that our nanoformulation holds the potential as a targeted and highly effective approach for cancer management and therapy, overcoming the limitations of conventional chemotherapy drugs.


Asunto(s)
Neoplasias de la Mama , Curcumina , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Liposomas , Células MCF-7 , Nanopartículas/química , Doxorrubicina , Portadores de Fármacos
2.
Bioengineering (Basel) ; 10(10)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37892889

RESUMEN

Cancer remains an enduring challenge in modern society, prompting relentless pursuits to confront its complexities. However, resistance often emerges against conventional treatments, driven by their inherent limitations such as adverse effects and limited solubility. Herein, we spotlight a remarkable solution; a niosomal platform engineered to tandemly ferry two potent agents, doxorubicin (DOX) and curcumin (CUR). Notably, we delve into the pivotal role of PEGylation, unraveling its impact on therapeutic efficacy. These niosomes consist of Span 60, Tween 60, and cholesterol with a molar ratio of 5:2:3, which were prepared via a thin film hydration method. The physicochemical characterization of particles was performed using DLS, zeta potential measurement, SEM, and FTIR analysis. In addition, their encapsulation efficiency and release profile were determined using the HPLC method. Finally, their cytotoxicity and biocompatibility effects were checked by performing an MTT assay test on the MCF7 and L929 cell lines. The obtained results confirmed the successful fabrication of co-loaded niosomal structures with and without PEG coating. The fabricated nanoparticles had sizes in the range of 100 to 200 nm with a surface charge of about -18 mV for particles without PEG coating and -40 mV for coated particles. Notably, DOX encapsulation efficiency leaps from 20% to 62% in the transition from uncoated to coated, while CUR exhibits an impressive surge from 80% to 95%. The drug release was more controlled and slower in the coated sample. Finally, the MTT results confirmed the biocompatibility and synergistic effect of the simultaneous use of two drugs on cancer cells in the PEGylated niosomal particle. Based on the results, PEGylated niosomal particles can be considered adept vehicles for the simultaneous delivery of different chemotherapy cargoes with synergic interaction to overcome cancer.

3.
Front Endocrinol (Lausanne) ; 14: 1156757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441501

RESUMEN

Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Humanos , Diabetes Mellitus Tipo 2/terapia , Ritmo Circadiano/fisiología , Sueño/fisiología , Cronoterapia , Mamíferos
4.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679179

RESUMEN

Changes in weather conditions and lifestyle lead to an annual increase in the amount of lung cancer, and therefore it is one of the three most common types of cancer, making it important to find an appropriate treatment method. This research aims to introduce a new smart nano-drug delivery system with antibacterial and anticancer capabilities that could be applied for the treatment of lung cancer. It is composed of a niosomal carrier containing curcumin as an anticancer drug and is coated with a chitosan polymeric shell, alongside Rose Bengal (RB) as a photosensitizer with an antibacterial feature. The characterization results confirmed the successful fabrication of lipid-polymeric carriers with a size of nearly 80 nm and encapsulation efficiency of about 97% and 98% for curcumin and RB, respectively. It had the Korsmeyer-Peppas release pattern model with pH and temperature responsivity so that nearly 60% and 35% of RB and curcumin were released at 37 °C and pH 5.5. Moreover, it showed nearly 50% toxicity against lung cancer cells over 72 h and antibacterial activity against Escherichia coli. Accordingly, this nanoformulation could be considered a candidate for the treatment of lung cancer; however, in vivo studies are needed for better confirmation.

5.
Bioeng Transl Med ; 8(1): e10353, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684065

RESUMEN

Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.

6.
Bioeng Transl Med ; 8(1): e10325, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684100

RESUMEN

Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.

7.
Pharmacol Res ; 187: 106568, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423787

RESUMEN

The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.


Asunto(s)
Carcinogénesis , MicroARNs , Neoplasias , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Relevancia Clínica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo
8.
J Control Release ; 351: 50-80, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35934254

RESUMEN

The site-specific delivery of antitumor agents is of importance for providing effective cancer suppression. Poor bioavailability of anticancer compounds and the presence of biological barriers prevent their accumulation in tumor sites. These obstacles can be overcome using liposomal nanostructures. The challenges in cancer chemotherapy and stimuli-responsive nanocarriers are first described in the current review. Then, stimuli-responsive liposomes including pH-, redox-, enzyme-, light-, thermo- and magneto-sensitive nanoparticles are discussed and their potential for delivery of anticancer drugs is emphasized. The pH- or redox-sensitive liposomes are based on internal stimulus and release drug in response to a mildly acidic pH and GSH, respectively. The pH-sensitive liposomes can mediate endosomal escape via proton sponge. The multifunctional liposomes responsive to both redox and pH have more capacity in drug release at tumor site compared to pH- or redox-sensitive alone. The magnetic field and NIR irradiation can be exploited for external stimulation of liposomes. The light-responsive liposomes release drugs when they are exposed to irradiation; thermosensitive-liposomes release drugs at a temperature of >40 °C when there is hyperthermia; magneto-responsive liposomes release drugs in presence of magnetic field. These smart nanoliposomes also mediate co-delivery of drugs and genes in synergistic cancer therapy. Due to lack of long-term toxicity of liposomes, they can be utilized in near future for treatment of cancer patients.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Neoplasias , Humanos , Liposomas/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Neoplasias/tratamiento farmacológico , Concentración de Iones de Hidrógeno
9.
J Exp Clin Cancer Res ; 41(1): 214, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35773731

RESUMEN

BACKGROUND: One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. AIM OF REVIEW: The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. KEY SCIENTIFIC CONCEPTS OF REVIEW: The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.


Asunto(s)
Neoplasias de la Próstata , ARN Largo no Codificante , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
Life Sci ; 300: 120561, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35460707

RESUMEN

The nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of redox balance and it responds to various cell stresses that oxidative stress is the most well-known one. The Nrf2 should undergo nuclear translocation to exert its protective impacts and decrease ROS production. On the other hand, ischemic/reperfusion (I/R) injury is a pathological event resulting from low blood flow to an organ and followed by reperfusion. The I/R induces cell injury and organ dysfunction. The present review focuses on Nrf2 function in alleviation of I/R injury. Stimulating of Nrf2 signaling ameliorates I/R injury in various organs including lung, liver, brain, testis and heart. The Nrf2 enhances activity of antioxidant enzymes to reduce ROS production and prevent oxidative stress-mediated cell death. Besides, Nrf2 reduces inflammation via decreasing levels of pro-inflammatory factors including IL-6, IL-1ß and TNF-α. Nrf2 signaling is beneficial in preventing apoptosis and increasing cell viability. Nrf2 induces autophagy to prevent apoptosis during I/R injury. Furthermore, it can interact with other molecular pathways including PI3K/Akt, NF-κB, miRNAs, lncRNAs and GSK-3ß among others, to ameliorate I/R injury. The therapeutic agents, most of them are phytochemicals such as resveratrol, berberine and curcumin, induce Nrf2 signaling in I/R injury alleviation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Daño por Reperfusión , Humanos , Apoptosis/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Isquemia , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reperfusión , Daño por Reperfusión/metabolismo
11.
Phytother Res ; 36(1): 189-213, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34697839

RESUMEN

Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacología , Apoptosis , Cisplatino/farmacología , Curcumina/farmacología , Humanos , Neoplasias/tratamiento farmacológico
12.
Adv Sci (Weinh) ; 9(2): e2102678, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34796680

RESUMEN

Cancer is one of the top life-threatening dangers to the human survival, accounting for over 10 million deaths per year. Bioactive glasses have developed dramatically since their discovery 50 years ago, with applications that include therapeutics as well as diagnostics. A new system within the bioactive glass family, mesoporous bioactive glasses (MBGs), has evolved into a multifunctional platform, thanks to MBGs easy-to-functionalize nature and tailorable textural properties-surface area, pore size, and pore volume. Although MBGs have yet to meet their potential in tumor treatment and imaging in practice, recently research has shed light on the distinguished MBGs capabilities as promising theranostic systems for cancer imaging and therapy. This review presents research progress in the field of MBG applications in cancer diagnosis and therapy, including synthesis of MBGs, mechanistic overview of MBGs application in tumor diagnosis and drug monitoring, applications of MBGs in cancer therapy ( particularly, targeted delivery and stimuli-responsive nanoplatforms), and immunological profile of MBG-based nanodevices in reference to the development of novel cancer therapeutics.


Asunto(s)
Vidrio/química , Neoplasias/diagnóstico , Neoplasias/terapia , Animales , Modelos Animales de Enfermedad , Hipertermia Inducida/métodos , Ratones , Nanomedicina/métodos , Neoplasias/inmunología , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Porosidad
13.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769099

RESUMEN

As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/ß-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.


Asunto(s)
Neoplasias/dietoterapia , Células Madre Neoplásicas , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico
14.
Photodiagnosis Photodyn Ther ; 36: 102609, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34728420

RESUMEN

Leishmaniasis has infected more than 12 million people worldwide. This neglected tropical disease, causing 20,000-30,000 deaths per year, is a global health problem. The emergence of resistant parasites and serious side effects of conventional therapies has led to the search for less toxic and non-invasive alternative treatments. Photodynamic therapy is a promising therapeutic strategy to produce reactive oxygen species for the treatment of leishmaniasis. In this regard, natural and synthetic photosensitizers such as curcumin, hypericin, 5-aminolevulinic acid, phthalocyanines, phenothiazines, porphyrins, chlorins and nanoparticles have been applied. In this review, the recent advances on using photodynamic therapy for treating Leishmania species have been reviewed.


Asunto(s)
Leishmania , Leishmaniasis , Nanopartículas , Fotoquimioterapia , Humanos , Leishmaniasis/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico
15.
Artículo en Inglés | MEDLINE | ID: mdl-34795782

RESUMEN

Citrus fruits such as oranges, grapefruits, lemons, limes, tangerines, and mandarins, whose production is increasing every year with the rise of consumer demand, are among the most popular fruits cultivated throughout the globe. Citrus genus belongs to the Rutaceae family and is known for its beneficial effects on health for centuries. These plant groups contain many beneficial nutrients and bioactive compounds. These compounds have antimicrobial, anticancer, antidiabetic, antiplatelet aggregation, and anti-inflammatory activities. Citrus waste, generated by citrus-processing industries in large amounts every year, has an important economic value due to richness of bioactive compounds. The present review paper has summarized the application and properties of Citrus and its waste in some fields such as food and drinks, traditional medicine practices, and recent advances in modern approaches towards pharmaceutical and nutraceutical formulations.

16.
Food Chem Toxicol ; 157: 112576, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34571052

RESUMEN

Cancer is the second leading cause of death worldwide. Majority of recent research efforts in the field aim to address why cancer resistance to therapy develops and how to overcome or prevent it. In line with this, novel anti-cancer compounds are desperately needed for chemoresistant cancer cells. Phytochemicals, in view of their pharmacological activities and capacity to target various molecular pathways, are of great interest in the development of therapeutics against cancer. Plant-derived-natural products have poor bioavailability which restricts their anti-tumor activity. Gallic acid (GA) is a phenolic acid exclusively found in natural sources such as gallnut, sumac, tea leaves, and oak bark. In this review, we report on the most recent research related to anti-tumor activities of GA in various cancers with a focus on its underlying molecular mechanisms and cellular pathwaysthat that lead to apoptosis and migration of cancer cells. GA down-regulates the expression of molecular pathways involved in cancer progression such as PI3K/Akt. The co-administration of GA with chemotherapeutic agents shows improvements in suppressing cancer malignancy. Various nano-vehicles such as organic- and inorganic nano-materials have been developed for targeted delivery of GA at the tumor site. Here, we suggest that nano-vehicles improve GA bioavailability and its ability for tumor suppression.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Ácido Gálico/uso terapéutico , Sistema de Administración de Fármacos con Nanopartículas , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Apoptosis/efectos de los fármacos , Ácido Gálico/administración & dosificación , Humanos , Sistema de Administración de Fármacos con Nanopartículas/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas/uso terapéutico
17.
Pharmacol Res ; 171: 105759, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245864

RESUMEN

As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Ácidos Cafeicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/farmacocinética , Ácidos Cafeicos/farmacocinética , Humanos , Neoplasias/metabolismo
18.
Molecules ; 26(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921908

RESUMEN

The failure of chemotherapy is a major challenge nowadays, and in order to ensure effective treatment of cancer patients, it is of great importance to reveal the molecular pathways and mechanisms involved in chemoresistance. Cisplatin (CP) is a platinum-containing drug with anti-tumor activity against different cancers in both pre-clinical and clinical studies. However, drug resistance has restricted its potential in the treatment of cancer patients. CP can promote levels of free radicals, particularly reactive oxygen species (ROS) to induce cell death. Due to the double-edged sword role of ROS in cancer as a pro-survival or pro-death mechanism, ROS can result in CP resistance. In the present review, association of ROS with CP sensitivity/resistance is discussed, and in particular, how molecular pathways, both upstream and downstream targets, can affect the response of cancer cells to CP chemotherapy. Furthermore, anti-tumor compounds, such as curcumin, emodin, chloroquine that regulate ROS and related molecular pathways in increasing CP sensitivity are described. Nanoparticles can provide co-delivery of CP with anti-tumor agents and by mediating photodynamic therapy, and induce ROS overgeneration to trigger CP sensitivity. Genetic tools, such as small interfering RNA (siRNA) can down-regulate molecular pathways such as HIF-1α and Nrf2 to promote ROS levels, leading to CP sensitivity. Considering the relationship between ROS and CP chemotherapy, and translating these findings to clinic can pave the way for effective treatment of cancer patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Transducción de Señal/efectos de los fármacos
19.
Pharmaceutics ; 13(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672366

RESUMEN

Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.

20.
Phytother Res ; 35(1): 155-179, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33507609

RESUMEN

In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Fenantrenos/uso terapéutico , Animales , Antineoplásicos/farmacología , Humanos , Fenantrenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA