Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 26(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799580

RESUMEN

Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and ß-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Neoplasias/dietoterapia , Probióticos/farmacología , Butiratos/farmacología , Suplementos Dietéticos/microbiología , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Humanos , Sulfuro de Hidrógeno/farmacología , Ácido Láctico/farmacología , Metaboloma , Neoplasias/metabolismo , Prebióticos/microbiología , Probióticos/metabolismo , beta-Glucanos/farmacología
2.
Front Pharmacol ; 12: 567001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746746

RESUMEN

For severe unconjugated hyperbilirubinemia the gold standard treatment is phototherapy with blue-green light, producing more polar photo-oxidation products, believed to be non-toxic. The aim of the present study was to compare the effects of bilirubin (BR) and lumirubin (LR), the major BR photo-oxidation product, on metabolic and oxidative stress markers. The biological activities of these pigments were investigated on several human and murine cell lines, with the focus on mitochondrial respiration, substrate metabolism, reactive oxygen species production, and the overall effects on cell viability. Compared to BR, LR was found to be much less toxic, while still maintaining a similar antioxidant capacity in the serum as well as suppressing activity leading to mitochondrial superoxide production. Nevertheless, due to its lower lipophilicity, LR was less efficient in preventing lipoperoxidation. The cytotoxicity of BR was affected by the cellular glycolytic reserve, most compromised in human hepatoblastoma HepG2 cells. The observed effects were correlated with changes in the production of tricarboxylic acid cycle metabolites. Both BR and LR modulated expression of PPARα downstream effectors involved in lipid and glucose metabolism. Proinflammatory effects of BR, evidenced by increased expression of TNFα upon exposure to bacterial lipopolysaccharide, were observed in murine macrophage-like RAW 264.7 cells. Collectively, these data point to the biological effects of BR and its photo-oxidation products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients.

3.
Nutrients ; 12(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781598

RESUMEN

Omega-3 polyunsaturated fatty acids (ω-3PUFAs) are introduced into parenteral nutrition (PN) as hepatoprotective but may be susceptible to the lipid peroxidation while olive oil (OO) is declared more peroxidation resistant. We aimed to estimate how the lipid composition of PN mixture affects plasma and erythrocyte lipidome and the propensity of oxidative stress. A cross-sectional comparative study was performed in a cohort of adult patients who were long-term parenterally administered ω-3 PUFAs without (FO/-, n = 9) or with (FO/OO, n = 13) olive oil and healthy age- and sex-matched controls, (n = 30). Lipoperoxidation assessed as plasma and erythrocyte malondialdehyde content was increased in both FO/- and FO/OO groups but protein oxidative stress (protein carbonyls in plasma) and low redox status (GSH/GSSG in erythrocytes) was detected only in the FO/- subcohort. The lipidome of all subjects receiving ω-3 PUFAs was enriched with lipid species containing ω-3 PUFAs (FO/-˃FO/OO). Common characteristic of all PN-dependent patients was high content of fatty acyl-esters of hydroxy-fatty acids (FAHFAs) in plasma while acylcarnitines and ceramides were enriched in erythrocytes. Plasma and erythrocyte concentrations of plasmanyls and plasmalogens (endogenous antioxidants) were decreased in both patient groups with a significantly more pronounced effect in FO/-. We confirmed the protective effect of OO in PN mixtures containing ω-3 PUFAs.


Asunto(s)
Antioxidantes/metabolismo , Emulsiones Grasas Intravenosas/farmacología , Ácidos Grasos Omega-3/farmacología , Estrés Oxidativo/efectos de los fármacos , Nutrición Parenteral/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios Transversales , Eritrocitos/metabolismo , Femenino , Aceites de Pescado/farmacología , Humanos , Enfermedades Intestinales/sangre , Enfermedades Intestinales/terapia , Lipidómica , Lípidos/sangre , Masculino , Persona de Mediana Edad , Aceite de Oliva/farmacología , Nutrición Parenteral/efectos adversos
4.
Sci Rep ; 9(1): 19097, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836843

RESUMEN

Parenteral nutrition (PN) is often associated with the deterioration of liver functions (PNALD). Omega-3 polyunsaturated fatty acids (PUFA) were reported to alleviate PNALD but the underlying mechanisms have not been fully unraveled yet. Using omics´ approach, we determined serum and liver lipidome, liver proteome, and liver bile acid profile as well as markers of inflammation and oxidative stress in rats administered either ω-6 PUFA based lipid emulsion (Intralipid) or ω-6/ω-3 PUFA blend (Intralipid/Omegaven) via the enteral or parenteral route. In general, we found that enteral administration of both lipid emulsions has less impact on the liver than the parenteral route. Compared with parenterally administered Intralipid, PN administration of ω-3 PUFA was associated with 1. increased content of eicosapentaenoic (EPA)- and docosahexaenoic (DHA) acids-containing lipid species; 2. higher abundance of CYP4A isoenzymes capable of bioactive lipid synthesis and the increased content of their potential products (oxidized EPA and DHA); 3. downregulation of enzymes involved CYP450 drug metabolism what may represent an adaptive mechanism counteracting the potential negative effects (enhanced ROS production) of PUFA metabolism; 4. normalized anti-oxidative capacity and 5. physiological BAs spectrum. All these findings may contribute to the explanation of ω-3 PUFA protective effects in the context of PN.


Asunto(s)
Ácidos y Sales Biliares/análisis , Nutrición Enteral/métodos , Ácidos Grasos Omega-3/química , Hígado/metabolismo , Nutrición Parenteral/métodos , Proteoma/metabolismo , Animales , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Emulsiones , Ácidos Grasos Insaturados/metabolismo , Aceites de Pescado , Inflamación , Lipidómica , Lípidos/química , Masculino , Malondialdehído/metabolismo , Metabolómica , Estrés Oxidativo , Oxígeno/metabolismo , Fosfolípidos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Aceite de Soja
5.
Hum Mol Genet ; 26(1): 145-157, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28025333

RESUMEN

Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Bilirrubina/toxicidad , Cerebelo/patología , Modelos Animales de Enfermedad , Glucuronosiltransferasa/fisiología , Hiperbilirrubinemia Neonatal/complicaciones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Síndromes de Neurotoxicidad/etiología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Animales Recién Nacidos , Supervivencia Celular , Cerebelo/efectos de los fármacos , Femenino , Humanos , Hiperbilirrubinemia Neonatal/metabolismo , Hiperbilirrubinemia Neonatal/patología , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología
6.
Ann Hepatol ; 13(2): 273-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24552870

RESUMEN

Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate possible anticancer effects of S. platensis and S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines in vitro in a dose-dependent manner (from 0.16 g•L-1 [S. platensis], 60 µM [PCB], and 125 µM [chlorophyllin], p<0.05). The anti-proliferative effects of S. platensis were also shown in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p < 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione redox status (p = 0.0006; 0.016; and 0.006 for S. platensis, PCB, and chlorophyllin, respectively). In conclusion, S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be higher in subjects with Gilbert syndrome.


Asunto(s)
Antineoplásicos/farmacología , Bilirrubina/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Pancreáticas/patología , Extractos Vegetales/farmacología , Spirulina , Tetrapirroles/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Desnudos , Oxidación-Reducción , Neoplasias Pancreáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Trasplante Heterólogo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Gastroenterology ; 136(2): 673-82.e1, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19027011

RESUMEN

BACKGROUND & AIMS: We tested the hypothesis that oral administration of bile salts, which are known to increase the biliary excretion of unconjugated bilirubin (UCB), decreases unconjugated hyperbilirubinemia in the Gunn rat model. METHODS: Adult Gunn rats were fed a standard diet or the same diet supplemented with 0.5 weight % ursodeoxycholic acid (UDCA) or cholic acid (CA) for 1 or 6 weeks. UCB and urobilinoids, a family of intestinal UCB breakdown products, were determined in plasma, feces, or both. After 6 weeks of treatment, tracer 3H-UCB was administered intravenously to determine steady-state UCB kinetics over the next 60 hours. RESULTS: One-week treatment with UDCA or CA decreased plasma UCB concentrations by 21% and 30%, respectively (each P < .01). During the first 4 days of treatment, both UDCA and CA increased the combined fecal excretion of UCB and urobilinoids (+52% and +32%, respectively; each P < .01). Prolongation of treatment to 6 weeks caused a persistent decrease in plasma UCB concentrations to approximately 40% below baseline (each bile salt P < .001). (3)H-UCB kinetic studies showed that UDCA and CA administration decreased UCB pool size (-33% and -32%, respectively; each P < .05) and increased UCB fractional turnover (+33% and +25%, respectively; each P < .05). CONCLUSIONS: Dietary bile salt administration induces a large, persistent decrease in plasma UCB concentrations in Gunn rats. Both UDCA and CA enhance UCB turnover by increasing its fecal disposal. These results support the application of oral bile salt treatment in patients with unconjugated hyperbilirubinemia.


Asunto(s)
Ácidos y Sales Biliares/uso terapéutico , Fármacos Gastrointestinales/uso terapéutico , Hiperbilirrubinemia/tratamiento farmacológico , Administración Oral , Animales , Ácidos y Sales Biliares/administración & dosificación , Bilirrubina/metabolismo , Ácido Cólico/administración & dosificación , Ácido Cólico/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Heces , Fármacos Gastrointestinales/administración & dosificación , Hiperbilirrubinemia/metabolismo , Masculino , Ratas , Tritio , Ácido Ursodesoxicólico/administración & dosificación , Ácido Ursodesoxicólico/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA