Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Mol Nutr Food Res ; 58(8): 1721-38, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24888568

RESUMEN

The redox state of the cell is predominantly dependent on an iron redox couple and is maintained within strict physiological limits. Iron is an essential metal for hemoglobin synthesis in erythrocytes, for oxidation-reduction reactions, and for cellular proliferation. The maintenance of stable iron concentrations requires the coordinated regulation of iron transport into plasma from dietary sources in the duodenum, from recycled senescent red cells in macrophages, and from storage in hepatocytes. The absorption of dietary iron, which is present in heme or nonheme form, is carried out by mature villus enterocytes of the duodenum and proximal jejunum. Multiple physiological processes are involved in maintaining iron homeostasis. These include its storage at the intracellular and extracellular level. Control of iron balance in the whole organism requires communication between sites of uptake, utilization, and storage. Key protein transporters and the molecules that regulate their activities have been identified. In this field, ferritins and hepcidin are the major regulator proteins. A variety of transcription factors may be activated depending on the level of oxidative stress, leading to the expression of different genes. Major preclinical and clinical trials have shown advances in iron-chelation therapy for the treatment of iron-overload disease as well as cardiovascular and chronic inflammatory diseases.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Sistema Cardiovascular/metabolismo , Sobrecarga de Hierro/metabolismo , Hierro de la Dieta/envenenamiento , Oxidantes/envenenamiento , Estrés Oxidativo , Transducción de Señal , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Sobrecarga de Hierro/fisiopatología , Hierro de la Dieta/metabolismo , Oxidantes/metabolismo , Oxidación-Reducción
3.
Mol Nutr Food Res ; 58(1): 101-16, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23740826

RESUMEN

L-Arginine (L-Arg) is a conditionally essential amino acid in the human diet. The most common dietary sources of L-Arg are meat, poultry and fish. L-Arg is the precursor for the synthesis of nitric oxide (NO); a key signaling molecule via NO synthase (NOS). Endogenous NOS inhibitors such as asymmetric-dimethyl-L-Arg inhibit NO synthesis in vivo by competing with L-Arg at the active site of NOS. In addition, NOS possesses the ability to be "uncoupled" to produce superoxide anion instead of NO. Reduced NO bioavailability may play an essential role in cardiovascular pathologies and metabolic diseases. L-Arg deficiency syndromes in humans involve endothelial inflammation and immune dysfunctions. Exogenous administration of L-Arg restores NO bioavailability, but it has not been possible to demonstrate, that L-Arg supplementation improved endothelial function in cardiovascular disease such as heart failure or hypertension. L-Arg supplementation may be a novel therapy for obesity and metabolic syndrome. The utility of l-Arg supplementation in the treatment of L-Arg deficiency syndromes remains to be established. Clinical trials need to continue to determine the optimal concentrations and combinations of L-Arg, with other protective compounds such as tetrahydrobiopterin (BH4 ), and antioxidants to combat oxidative stress that drives down NO production in humans.


Asunto(s)
Arginina/metabolismo , Sistema Cardiovascular/metabolismo , Suplementos Dietéticos , Óxido Nítrico Sintasa/metabolismo , Tejido Adiposo/metabolismo , Arginina/farmacología , Transporte Biológico , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Biopterinas/farmacología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/prevención & control , Citrulina/farmacología , Dieta , Humanos
4.
Mol Nutr Food Res ; 57(1): 114-25, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23293044

RESUMEN

Diabetes has emerged as a major threat to worldwide health. The exact mechanisms underlying the disease are unknown; however, there is growing evidence that the excess generation of reactive oxygen species (ROS) associated with hyperglycemia, causes oxidative stress in a variety of tissues. In this context, various natural compounds with pleiotropic actions like α-lipoic acid (LA) are of interest, especially in metabolic diseases such as diabetes. LA, either as a dietary supplement or a therapeutic agent, modulates redox potential because of its ability to match the redox status between different subcellular compartments as well as extracellularly. Both the oxidized (disulfide) and reduced (di-thiol: dihydro-lipoic acid, DHLA) forms of LA show antioxidant properties. LA exerts antioxidant effects in biological systems through ROS quenching but also via an action on transition metal chelation. Dietary supplementation with LA has been successfully employed in a variety of in vivo models of disease associated with an imbalance of redox status: diabetes and cardiovascular diseases. The complex and intimate association between increased oxidative stress and increased inflammation in related disorders such as diabetes, makes it difficult to establish the temporal sequence of the relationship.


Asunto(s)
Antioxidantes/farmacología , Suplementos Dietéticos , Ácido Tióctico/análogos & derivados , Ácido Tióctico/farmacología , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Quelantes/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/prevención & control , Células Endoteliales/efectos de los fármacos , Humanos , Hiperglucemia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Ácido Tióctico/química
5.
J Pharmacol Exp Ther ; 339(3): 807-14, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21934029

RESUMEN

The molecular mechanisms underlying doxorubicin (DOX)-induced cardiomyopathy include alterations in cardiomyocytes' oxidative stress status and in gene expression. Although such alterations have been reported during in vivo DOX treatment of animals, it remains to be clarified whether they persist after treatment cessation. To address this question, rats were injected with either saline (1 ml/kg/day i.p; control) or DOX (1 mg/kg/day i.p.) for 10 days, and 70 days later cardiac functional parameters were evaluated in vivo by left ventricular catheterization. Hearts were also harvested for histological analyses as well as measurements of oxidative stress parameters by various techniques and gene expression by quantitative polymerase chain reaction of markers of cardiac pathological remodeling, namely atrial natriuretic factor, myosin heavy chain ß, vascular endothelial growth factor A (VEGF-A), and sarcoplasmic reticulum Ca(+2) ATPase. Compared with controls, DOX-treated rats displayed marked alterations in most parameters even 2 months after cessation of treatment. These included 1) lower left ventricular contractility (+dP/dt), 2) increased levels of plasma and myocardial oxidative stress markers, namely thiobarbituric acid reactive substances or dihydroethidium fluorescence, and 3) markedly altered transcript levels for all measured markers of cardiac remodeling, except VEGF-A. These changes correlated significantly with +dP/dt values assessed in the two groups of animals. In conclusion, this study demonstrated that as many as 2 months after cessation of DOX treatment cardiac alterations persisted, reflecting increased oxidative stress and pathological remodeling, the latter being linked to the development of contractile dysfunction.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Cardiotoxinas/toxicidad , Doxorrubicina/toxicidad , Cardiopatías/genética , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Remodelación Ventricular/genética , Animales , Antibióticos Antineoplásicos/farmacología , Peso Corporal/efectos de los fármacos , Cardiotoxinas/farmacología , Colágeno/análisis , Doxorrubicina/farmacología , Evaluación Preclínica de Medicamentos , Radicales Libres/sangre , Cardiopatías/inducido químicamente , Cardiopatías/patología , Masculino , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Ratas Wistar , Superóxidos/análisis , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Factores de Tiempo , Remodelación Ventricular/efectos de los fármacos
6.
J Cardiovasc Pharmacol ; 54(5): 391-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19998523

RESUMEN

In the past few years, a growing interest has been given to the possible antioxidant functions of a natural acid, synthesized in human tissues: alpha-lipoic acid (ALA). Both the oxidized (disulfide) and reduced (dithiol: dihydrolipoic acid, DHLA) forms of ALA show antioxidant properties. ALA administered in the diet accumulates in tissues, and a substantial part is converted to DHLA via a lipoamide dehydrogenase. Commercial ALA is usually a racemic mixture of the R and S forms. Chemical studies have indicated that ALA scavenges hydroxyl radicals, hypochlorous acid, and singlet oxygen. ALA exerts antioxidant effects in biological systems not only through direct ROS quenching but also via transition metal chelation. ALA has been shown to possess a number of beneficial effects both in the prevention and treatment of diabetes in experimental conditions. ALA presents beneficial effects in the management of symptomatic diabetic neuropathy and has been used in this context in Germany for more than 30 years. In cardiovascular disease, dietary supplementation with ALA has been successfully employed in a variety of in vivo models: ischemia-reperfusion, heart failure, and hypertension. More mechanistic and human in vivo studies are needed to determine whether optimizing the dietary intake of ALA can help to decrease cardiovascular diseases. A more complete understanding of cellular biochemical events that influence oxidative damage is required to guide future therapeutic advances.


Asunto(s)
Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/prevención & control , Ácido Tióctico/uso terapéutico , Animales , Antioxidantes/administración & dosificación , Antioxidantes/metabolismo , Antioxidantes/farmacocinética , Enfermedades Cardiovasculares/metabolismo , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/prevención & control , Suplementos Dietéticos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Lisina/administración & dosificación , Lisina/análogos & derivados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Ácido Tióctico/administración & dosificación , Ácido Tióctico/análogos & derivados , Ácido Tióctico/biosíntesis , Ácido Tióctico/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA