Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Funct ; 12(19): 9007-9017, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34382988

RESUMEN

The biofilms produced by the aggregation of bacterial colonies are among the major obstacles of host immune system monitoring and antimicrobial treatment. Herein, we report PEGylated dihydromyricetin-loaded liposomes coated with tea saponin grafted on chitosan (TS/CTS@DMY-lips) as an efficient cationic antibacterial agent against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which is supported by their deep penetration into bacterial biofilms and broad pH-stable release performance of dihydromyricetin (DMY). The successful construction of the drug delivery system relied on tea saponin grafted on chitosan (TS/CTS) via formatted ester bonds or amido bonds as a polyelectrolyte layer of PEGylated dihydromyricetin-loaded liposomes (DMY lips), which achieved controlled release of DMY in weak acidic and neutral physiological environments. The micromorphology of TS/CTS@DMY-lips was observed to resemble dendritic cells with an average size of 266.49 nm, and they had excellent encapsulation efficiency (41.93%), water-solubility and stability in aqueous solution. Besides, TS/CTS@DMY-lips displayed effective destruction of bacterial energy metabolism and cytoplasmic membranes, resulting in the deformation of the cell wall and leaking of cytoplasmic constituents. Compared to free DMY, DMY lips and chitosan-coated dihydromyricetin liposomes (CTS@DMY-lips), TS/CTS@DMY-lips has more thorough killing activity against E. coli and S. aureus, which is related to its excellent sustained release performance of DMY under the protection of the TS/CTS coating.


Asunto(s)
Antibacterianos/farmacología , Saponinas/farmacología , , Antibacterianos/química , Composición de Medicamentos , Metabolismo Energético , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Flavonoles/química , Humanos , Liposomas/química , Pruebas de Sensibilidad Microbiana , Respiración , Saponinas/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
2.
ACS Omega ; 5(35): 22578-22586, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923817

RESUMEN

Immunogenic, methionine copper-induced response had proven to be precedent in providing resistance against certain diseases in fish. This study allocates the fitness strategy for Oreochromis niloticus by introducing and incorporating the well-designed, stabilized, and biocompatible N-carbamoyl-methionine copper (NCM-Cu) as a Cu potent source in diet that enhances the bioavailability and fitness. The synchronized NCM-Cu complex was characterized by directing ultraviolet and visible spectrophotometry (UV-vis), Fourier-transform infrared (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and single-crystal X-ray diffraction. Results revealed blue columnar crystalline, NCM-Cu complex with an empirical formula as C12H30CuN4O10S2. Anonymously, the overall growth performance of the fish remained unaltered with NCM-Cu adjunct feed. NCM-Cu significantly raised the Cu accumulation in the fish muscles, liver, gill, and intestine in contrast to the basic Cu-rich feed. The serum antioxidant enzyme activity elevated up to (ceruloplasmin: 19.38 U/L) and the lowest liver malondialdehyde (MDA) content (8.81 nmol/mg prot.) and triglyceride content (0.39 nmol/g prot.) were observed in the NCM-Cu group as compared to the basic Cu and CuSO4 groups, suggesting that NCM-Cu promoted antioxidative responses and alleviated lipid peroxidation of O. niloticus. Overweening, the synthesized complex, NCM-Cu significantly regulated the expression levels of lysozyme, immunoglobulin M, complement 4, and complement 3 up to 10.93 U/mL, 0.72, 0.77, and 1.18 mg/mL in serum, respectively. Thus, such endorsed results reveal the preeminence of NCM-Cu-supplemented diet for the fitness in O. niloticus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA