Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Drug Deliv Rev ; 189: 114479, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35932906

RESUMEN

Phototherapy is a noninvasive cancer treatment that relies on the interaction between light and photoactive agents. These photoactive agents are typically organic dyes, but their hydrophobic nature and self-aggregation tendency in biological media greatly restricts the development of highly effective phototherapeutic systems. In the past decade, functional dye-doped metal-organic framework (MOF)-based phototherapy has attracted enormous interest because organic dyes can be encapsulated and isolated within the MOF structure to show superior treatment efficacy. In addition to incorporating the reported phototherapeutic dyes into MOF as the ligand or the guest in the pores, the construction of an MOF-based phototherapy agent can also be extended to these dye units that are previously inactive for phototherapy. Thus, this review focuses on the emerging development of phototherapeutic MOFs that exhibited better performance than the involving dye units due to the controlled dye aggregation within the MOF. The related mechanisms and some emerging future directions of dye-doped MOF-based phototherapy are also discussed and summarized.


Asunto(s)
Estructuras Metalorgánicas , Colorantes , Humanos , Ligandos , Fototerapia
2.
Angew Chem Int Ed Engl ; 60(44): 23569-23573, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34347334

RESUMEN

Organic self-assembled co-crystals have garnered considerable attention due to their facile synthesis and intriguing properties, but supramolecular interactions restrict their stability in aqueous solution, which is especially important for biological applications. Herein, we report on the first biological application of aqueous dispersible self-assembled organic co-crystals via the construction of metal-organic framework (MOF) -stabilized co-crystals. In particular, we built an electron-deficient MOF with naphthalene diimide (NDI) as the ligand and biocompatible Ca2+ as the metal nodes. An electron donor molecule, pyrene, was encapsulated to form the host-guest MOF self-assembled co-crystal. We observed that such MOF structure leads to uniquely high-density ordered arrangement and the close intermolecular distance (3.47 Å) of the charge transfer pairs. Hence, the concomitant superior charge transfer interaction between pyrene/NDI can be attained and the resultant photothermal conversion efficiency of Py@Ca-NDI in aqueous solution can thus reach up to 41.8 %, which, to the best of our knowledge, is the highest value among the reported organic co-crystal materials; it is also much higher than that of the FDA approved photothermal agent ICG as well as most of the reported MOFs. Based on this realization, as a proof of concept, we demonstrated that such a self-assembled organic co-crystal platform can be used in biological applications that are exemplified via highly effective long wavelength light photothermal therapy.


Asunto(s)
Materiales Biocompatibles/química , Calcio/química , Imidas/química , Estructuras Metalorgánicas/síntesis química , Naftalenos/química , Fototerapia , Pirenos/química , Catálisis , Estructuras Metalorgánicas/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-25129410

RESUMEN

Ying-zhi-huang injection (YZH-I) is an injectable multi-herbal prescription derived from the ancient Chinese remedy "Yin-chen-hao-tang", which is widely used in the clinic for the treatment of jaundice and chronic liver diseases. To date, little information is available on the pharmacokinetic properties of this poly-herbal formulation. Herein, we reported a simple, rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitative multiple reaction monitoring (MRM) of eight major ingredients of YZH-I (including baicalin, baicalein, wogonoside, geniposide, geniposidic acid, chlorogenic acid, neochlorogenic acid, and caffeic acid) in rat plasma. A fast single-tube multi-impurity precipitation extraction ("SMIPE") procedure was introduced for straightforward plasma preparation, based on one-pot deproteinization precipitation with acidified methanol extraction and in-situ multifunction impurity removal by a solid sorbent mixture (anh. magnesium sulfate plus octadecylsilane). Particularly, the addition of ascorbic acid in methanol (10 mg/mL) was found to exhibit a pronounced protective effect and significantly increase extraction effectiveness of the herbal phenolic components. Some pretreatment variables (protein precipitating solvent, acidifying agent and sorbent) were optimized with acceptable matrix effect (-18 to 7.7%), extraction recovery (65-88%) and process efficiency (62-91%) for the SMIPE-based LC-MRM multi-analyte quantitation using matrix-matched calibration (5-1000 ng/mL) without using internal standard. Mean accuracies were obtained in the range of 83-114% at three different fortification levels, with intra- and inter-day variations within 13%. This validated method was successfully applied to the simultaneous measurement and pharmacokinetic investigation of the chemical constituents in rats following an intravenous administration of YZH-I.


Asunto(s)
Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/farmacocinética , Espectrometría de Masas en Tándem/métodos , Animales , Cinamatos/sangre , Cinamatos/farmacocinética , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Iridoides/sangre , Iridoides/farmacocinética , Modelos Lineales , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA