Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(3): e2201349, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36325633

RESUMEN

Repairing infected bone defects is a challenge in the field of orthopedics because of the limited self-healing capacity of bone tissue and the susceptibility of refractory materials to bacterial activity. Innervation is the initiating factor for bone regeneration and plays a key regulatory role in subsequent vascularization, ossification, and mineralization processes. Infection leads to necrosis of local nerve fibers, impeding the repair of infected bone defects. Herein, a biomaterial that can induce skeletal-associated neural network reconstruction and bone regeneration with high antibacterial activity is proposed for the treatment of infected bone defects. A photosensitive conductive hydrogel is prepared by incorporating magnesium-modified black phosphorus (BP@Mg) into gelatin methacrylate (GelMA). The near-infrared irradiation-based photothermal and photodynamic treatment of black phosphorus endows it with strong antibacterial activity, improving the inflammatory microenvironment and reducing bacteria-induced bone tissue damage. The conductive nanosheets and bioactive ions released from BP@Mg synergistically improve the migration and secretion of Schwann cells, promote neurite outgrowth, and facilitate innerved bone regeneration. In an infected skull defect model, the GelMA-BP@Mg hydrogel shows efficient antibacterial activity and promotes bone and CGRP+ nerve fiber regeneration. The phototherapy conductive hydrogel provides a novel strategy based on skeletal-associated innervation for infected bone defect repair.


Asunto(s)
Regeneración Ósea , Hidrogeles , Antibacterianos/farmacología , Gelatina/farmacología , Hidrogeles/farmacología , Osteogénesis , Fósforo/farmacología , Animales
2.
Adv Healthc Mater ; 11(12): e2102791, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35182097

RESUMEN

Cutaneous wound healing, especially diabetic wound healing, is a common clinical challenge. Reactive oxygen species (ROS) and bacterial infection are two major detrimental states that induce oxidative stress and inflammatory responses and impede angiogenesis and wound healing. A derivative of the metabolite itaconate, 4-octyl itaconate (4OI) has attracted increasing research interest in recent years due to its antioxidant and anti-inflammatory properties. In this study, 4OI-modified black phosphorus (BP) nanosheets are incorporated into a photosensitive, multifunctional gelatin methacrylamide hydrogel to produce a new photothermal therapy (PTT) and photodynamic therapy (PDT) system with antibacterial and antioxidant properties for diabetic wound regeneration. Under laser irradiation, the 4OI-BP-entrapped hydrogel enables rapid gelation, forming a membrane on wounds, and offers high PTT and PDT efficacy to eliminate bacterial infection. Without laser irradiation, BP acts as a carrier and controls the release of 4OI, with which it synergistically enhances antioxidant activity, thus alleviating excessive ROS damage to endothelial cells, promoting neovascularization, and facilitating faster diabetic wound closure. These findings indicate that 4OI-BP-entrapped multifunctional hydrogel provides a stepwise countermeasure with antibacterial and antioxidant properties for enhanced diabetic wound healing and may lead to novel therapeutic interventions for diabetic ulcers.


Asunto(s)
Infecciones Bacterianas , Diabetes Mellitus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antioxidantes/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Diabetes Mellitus/tratamiento farmacológico , Células Endoteliales , Humanos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Fósforo , Especies Reactivas de Oxígeno , Cicatrización de Heridas
3.
Zhongguo Zhong Yao Za Zhi ; 39(12): 2345-50, 2014 Jun.
Artículo en Chino | MEDLINE | ID: mdl-25244773

RESUMEN

The study established a UPLC-MS/MS method that is used for simultaneous determination nine major bioactive compounds of Dachengqi Tang in rat plasma. Using Aglient C18 column (2.1 mm x 50 mm,1.7 microm) was chromatographed, using methanol-5 mmol x L(-1) ammonium formate mobile phase gradient, elution 0.3 mL x min(-1). In the plasma pre-treatment process, not only the method of methanol and acetonitrile protein precipitation was investigated, and different factors extraction solvent, the type of the scroll time, the number and the type of extraction solvent, the extraction volume of the extraction solution of liquid-liquid extraction is investigated. Finally, with ibuprofen as an internal standard, using ethyl acetate liquid-liquid extraction method pretreatment blood, N2 dry reconstituted supernatant after centrifugation UPLC-MS/MS analysis, in electrospray ionization (ESI) negative mode, using multiple reaction monitoring mode for testing. The linear range of emodin, rhein, aloe-emodin, chrysophanol, magnolol, honokiol, hesperidin and hesperitin is 0.33-660, 0.40-792, 0.41-827, 0.34-680, 0.45-907, 0.46-927, 0.43-867, 0.34-683, 0.39-787 microg x L(-1) respectively, good linear relationship; and extraction recovery were greater than 69.39%, days after the day of the RSD is less than 15%. This method can be used to study the rat gastric large bearing gas after Dachengqi Tang, the simultaneous determination of nine components in plasma for its pharmacokinetics and efficacy material base to provide a theoretical basis.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Plasma/química , Espectrometría de Masas en Tándem/métodos , Animales , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA