Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Phytomedicine ; 103: 154227, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35679795

RESUMEN

BACKGROUND: A growing body of evidence reveals that dysregulation of Hedgehog signaling pathway and dysbiosis of gut microbiota are associated with the pathogenesis of colorectal cancer (CRC). Berberine, a botanical benzylisoquinoline alkaloid, possesses powerful activities against various malignancies including CRC, with the underlying mechanisms to be illuminated. PURPOSE: The present study investigated the potencies of berberine on CRC and deciphered the action mechanisms in the context of Hedgehog signaling cascade and gut microbiota. METHODS: The effects of berberine on the malignant phenotype, apoptosis, cell cycle and Hedgehog signaling of CRC cells were examined in vitro. In azoxymethane/dextran sulfate sodium-caused mouse CRC, the efficacies of berberine on the carcinogenesis, pathological profile, apoptosis, cell cycle and Hedgehog signaling were determined in vivo. Also, the influences of berberine on gut microbiota in CRC mice were assessed by high-throughput DNA sequencing analysis of 16S ribosomal RNA of fecal microbiome in CRC mice. RESULTS: In the present study, berberine was found to dampen the proliferation, migration, invasion and colony formation of CRC cells, without toxicity to normal colonic cells. Additionally, berberine induced apoptosis and arrested cell cycle at G0/G1 phase in CRC cells, accompanied by reduced Hedgehog signaling pathway activity in vitro. In mouse CRC, berberine suppressed tumor growth, ameliorated pathological manifestations, and potentially induced the apoptosis and cell cycle arrest of CRC, with lowered Hedgehog signaling cascade in vivo. Additionally, berberine decreased ß-diversity of gut microbiota in CRC mice, without influence on α-diversity. Berberine also enriched probiotic microbes and depleted pathogenic microbes, and modulated the functionality of gut microbiota in CRC mice. CONCLUSIONS: Overall, berberine may suppress colorectal cancer, orchestrated by down-regulation of Hedgehog signaling pathway activity and modulation of gut microbiota.


Asunto(s)
Berberina , Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Azoximetano , Berberina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos
2.
Phytother Res ; 36(9): 3555-3570, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35708264

RESUMEN

It is being brought to light that smoothened (SMO)-independent non-canonical Hedgehog signaling is associated with the pathogenesis of various cancers. Ursolic acid (UA), a pentacyclic triterpenoid present in many medicinal herbs, manifests potent effectiveness against multiple malignancies including colorectal cancer (CRC). In our previous study, UA was found to protect against CRC in vitro by suppression of canonical Hedgehog signaling cascade. Here, the influence of UA on SMO-independent non-canonical Hedgehog signaling in CRC was investigated in the present study, which demonstrated that UA hampered the proliferation and migration, induced the apoptosis of HCT-116hSMO- cells with SMO gene knockdown, accompanied by the augmented expression of the suppressor of fused (SUFU), and lessened levels of MYC (c-Myc), glioma-associated oncogene (GLI1) and Sonic Hedgehog (SHH), and lowered phosphorylation of protein kinase B (PKB, AKT), suggesting that UA diminished non-canonical Hedgehog signal transduction in CRC. In HCT-116hSMO- xenograft tumor, UA ameliorated the symptoms, impeded the growth and caused the apoptosis of CRC, with heightened SUFU expression, and abated levels of MYC, GLI1, and SHH, and mitigated phosphorylation of AKT, indicating that UA down-regulated non-canonical Hedgehog signaling cascade in CRC. Taken together, UA may alleviate CRC by suppressing AKT signaling-dependent activation of SMO-independent non-canonical Hedgehog pathway.


Asunto(s)
Neoplasias Colorrectales , Triterpenos , Animales , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Hedgehog/metabolismo , Humanos , Ácido Oleanólico/análogos & derivados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Triterpenos/farmacología , Proteína con Dedos de Zinc GLI1/genética , Ácido Ursólico
3.
Phytomedicine ; 98: 153972, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35151214

RESUMEN

BACKGROUND: Colitis-associated colorectal cancer (CAC) is a specific type of colorectal cancer (CRC) and mainly develops from long-term intestinal inflammation. Mounting evidence reveals that activated Hedgehog signaling pathway plays a vital role in the pathogenesis of CRC. Scutellarin is a type of phytochemical flavonoid with a powerful efficacy on various malignancies, including CRC. AIM: Here, we studied the therapeutic effect of scutellarin on CRC and its direct regulating targets. METHODS: The CAC model in mice was established by azomethane oxide (AOM) and sodium dextran sulfate (DSS), followed by detection of the efficacies of scutellarin on the carcinogenesis, apoptosis, inflammation, Hedgehog signaling cascade and complicated inflammatory networks in CAC tissues of mice. In CRC SW480 cells, the effects of scutellarin on malignant phenotype, apoptosis and Hedgehog signaling were examined. In TNF-α-stimulated IEC-6 intestinal epithelial cells, the actions of scutellarin on inflammatory response and Hedgehog signals were assessed as well. RESULTS: Scutellarin significantly ameliorated AOM/DSS-caused CAC in mice and induced apoptosis in CAC tissues of mice, by inhibiting NF-κB (nuclear factor kappa B) -mediated inflammation and Hedgehog signaling axis. RNA-seq and transcriptome analysis indicated that scutellarin regulated complicated inflammatory networks in mouse CAC. Also, scutellarin suppressed the proliferation, migration, colony formation, and induced apoptosis of SW480 cells by down-regulation of Hedgehog signaling pathway activity. Additionally, scutellarin lessened NF-κB-mediated inflammatory response in TNF-α-stimulated IEC-6 cells, by attenuating Hedgehog signaling cascade. CONCLUSION: Scutellarin potently ameliorates CAC by suppressing Hedgehog signaling pathway activity, underpinning the promising application of scutellarin to CRC in clinical settings.

4.
Phytomedicine ; 94: 153805, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34749177

RESUMEN

BACKGROUND: Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE: The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS: The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS: Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-ß, GSK3ß, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS: Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.


Asunto(s)
Naftoquinonas , Preparaciones Farmacéuticas , FN-kappa B , Naftoquinonas/farmacología , Fosfatidilinositol 3-Quinasas
5.
Curr Opin Pharmacol ; 60: 200-207, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461565

RESUMEN

Lonicerae japonicae flos (LJF), known as Jin Yin Hua in Chinese, is one of the most commonly used traditional Chinese herbs and nutraceuticals. Nowadays, LJF is broadly applied in an array of afflictions, such as fever, sore throat, flu infection, cough, and arthritis, with the action mechanism to be elucidated. Here, we strove to summarize the main phytochemical components of LJF and review its updated pharmacological effects, including inhibition of inflammation, pyrexia, viruses, and bacteria, immunoregulation, and protection of the liver, nervous system, and heart, with a focus on the potential efficacy of LJF on coronavirus disease-2019 based on network pharmacology so as to fully underpin the utilization of LJF as a medicinal herb and a favorable nutraceutical in daily life.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacología , Extractos Vegetales/farmacología , Humanos , Lonicera , Fitoquímicos/farmacología , SARS-CoV-2/efectos de los fármacos
6.
Front Pharmacol ; 12: 685002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276374

RESUMEN

As an important part of complementary and alternative medicine, traditional Chinese medicine (TCM) has been applied to treat a host of diseases for centuries. Over the years, with the incidence rate of human colorectal cancer (CRC) increasing continuously and the advantage of TCM gradually becoming more prominent, the importance of TCM in both domestic and international fields is also growing with each passing day. However, the unknowability of active ingredients, effective substances, and the underlying mechanisms of TCM against this malignant tumor greatly restricts the translation degree of clinical products and the pace of precision medicine. In this review, based on the characteristics of TCM and the oral administration of most ingredients, we herein provide beneficial information for the clinical utilization of TCM in the prevention and treatment of CRC and retrospect the current preclinical studies on the related active ingredients, as well as put forward the research mode for the discovery of active ingredients and effective substances in TCM, to provide novel insights into the research and development of innovative agents from this conventional medicine for CRC treatment and assist the realization of precision medicine.

7.
Am J Chin Med ; 49(4): 805-828, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33827382

RESUMEN

Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. The gut microbiota mainly includes Sclerotium (including Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroides (including Bacteroides and Prevotella), which have biological antagonism, nutrition for the organism, metabolic abilities, immune stimulation, and ability to shape cancer genes functions to body. The gut microbiota can be related to the health of the host. Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Medicina Tradicional China/métodos , Humanos , Factores de Riesgo
8.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1217-1223, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-33787118

RESUMEN

To prove that ursolic acid(UA)could activate the autophagy of colorectal cancer HCT116 cells by inhibiting hedgehog signaling pathway. The effect of UA on the viability of HCT116 cells was determined by MTT assay. The effect of UA on the proliferation and migration of HCT116 cells was detected by crystal violet staining and scratch test. In the study on autophagy, the time points were screened out first: the autophagy fluorescence intensity of UA acting on HCT116 at different time points were detected by Cell Meter~(TM) Autophagy Assay Kit; Western blot was used to detect the expression of autophagy protein P62 at different time points. Then, Cell Meter~(TM) Autophagy Assay Kit was used to detect the effect of UA on autophagy fluorescence intensity of HCT116 cells. The effect of different doses of UA on the expressions of LC3Ⅱ and P62 proteins in HCT116 cells were detected by Western blot. Further, AdPlus-mCherry-GFP-LC3 B adenovirus transfection was used to detect the effects of UA on autophagy flux of HCT116 cells; UA combined with autophagy inhibitor chloroquine(CQ) was used to detect the expression of LC3Ⅱ by Western blot. In terms of mechanism, the effect of UA on hedgehog signaling pathway-related proteins in HCT116 cells was detected by Western blot. The results showed that UA inhibited the activity, proliferation and migration of HCT116 cells. UA enhanced the fluorescence intensity of autophagy in HCT116 cells, while promoting the expression of LC3Ⅱ and inhibiting the expression of P62, in a time and dose dependent manner. UA activated the autophagy in HCT116 cells, which manifested that UA resulted in the accumulation of fluorescence spots and strengthened the fluorescence intensity of autophagosomes; compared with UA alone, UA combined with autophagy inhibitor CQ promoted the expression of LC3Ⅱ. UA reduced the expressions of PTCH1, GLI1, SMO, SHH and c-Myc in hedgehog signaling pathway, while increased the expression of Sufu. In conclusion, our study showed that UA activated autophagy in colorectal cancer HCT116 cells, which was related to the mechanism in inhibiting hedgehog signaling pathway activity.


Asunto(s)
Neoplasias Colorrectales , Proteínas Hedgehog , Apoptosis , Autofagia , Línea Celular Tumoral , Proteínas Hedgehog/genética , Humanos , Transducción de Señal , Triterpenos , Ácido Ursólico
9.
Fitoterapia ; 147: 104735, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33010369

RESUMEN

Ursolic acid (UA) is a natural pentacyclic triterpenoid compound existing in various traditional Chinese medicinal herbs, and it possesses diverse pharmacological actions and some undesirable adverse effects, even toxicological activities. Due to UA's low solubility and poor bioavailability, and its interaction with gut microbiota after oral administration, the pharmacokinetics of UA remain elusive, leading to obscurity in the pharmacokinetics-pharmacodynamics (PK-PD) profile and relationship for UA. Based on literatures from PubMed, Google Scholar, ResearchGate, Web of Science and Wiley Online Library, with keywords of "pharmacology", "toxicology", "pharmacokinetics", "PK-PD" and "ursolic acid", herein we systematically review the pharmacology and toxicity of UA, and rethink on its pharmacokinetics on the basis of PK-PD model, and seek to delineate the underlying mechanisms for the characteristics of pharmacology and toxicology of UA, and for the pharmacokinetic features of UA particularly from the organ tropism and the interactions between UA and gut microbiota, and lay a solid foundation for development of UA-derived therapeutic agents in clinical settings.


Asunto(s)
Triterpenos/farmacología , Triterpenos/farmacocinética , Triterpenos/toxicidad , Animales , Antiinfecciosos , Antiinflamatorios , Antineoplásicos , Antivirales , Disponibilidad Biológica , Fármacos Cardiovasculares , Humanos , Solubilidad , Ácido Ursólico
10.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1676-1683, 2020 Apr.
Artículo en Chino | MEDLINE | ID: mdl-32489049

RESUMEN

The objective of this study was to investigate the inhibitory effect of scutellarin on the differentiation of colonic cancer stem cells in vitro and in vivo and to explore its underlying hedgehog signaling-based mechanism. The effect of scutellarin on the growth in vitro of HT-29 cells-derived cancer stem-like cells(HT-29 CSC) was observed with 3 D cell culture. The effect of scutellarin on the transformation of HT-29 CSC cells was assessed by soft agar colony formation assay. Fetal calf serum was used to induce differentiation of stem cells and observe the effect of scutellarin on HT-29 CSC cells differentiation in vitro. The effects of scutellarin on mRNA expressions of Lgr5, c-Myc, CK20 and Nanog in HT-29 CSC cells were determined by quantitative Real-time polymerase chain reaction(qRT-PCR). The effects of scutellarin on protein expressions of c-Myc, Gli1 and Lgr5 in HT-29 CSC cells were examined by Western blot. After subcutaneous implantation of HT-29 CSC cells in nude mice, the effect of scutellarin on the mouse body weight and the growth of HT-29 CSC-derived tumor were explored. qRT-PCR was used for evaluating the effect of scutellarin on mRNA levels of CD133, Lgr5, Gli1, Ptch1, c-Myc, Ki-67, CK20 and Nanog in tumor. Western blot and immunohistochemistry analysis were used to detect the effect of scutellarin on protein expressions of c-Myc, Gli1, Lgr5, CD133 and Ki-67 in tumor. The in vitro experiments showed that scutellarin inhibited the growth, transformation and differentiation of HT-29 CSC cells, significantly down-regulated the mRNA levels of Lgr5, c-Myc, CK20 and Nanog in HT-29 CSC cells as well as the protein expression levels of c-Myc, Gli1 and Lgr5 in HT-29 CSC cells. Additionally, animal experiments showed that scutellarin significantly inhibited the growth of subcutaneous xenografts in nude mice, and down-regulated the mRNA expressions of CD133, Lgr5, Gli1, Ptch1, c-Myc, Ki-67, CK20 and Nanog as well as the protein levels of c-Myc, Gli1, Lgr5, CD133 and Ki-67 of xenografts in nude mice. Taken together, scutellarin could inhibit the differentiation of colo-nic cancer stem cells in vitro and in vivo, potentially by down regulation of hedgehog signaling pathway activity.


Asunto(s)
Células Madre Neoplásicas , Animales , Apigenina , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Glucuronatos , Proteínas Hedgehog , Humanos , Ratones , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA