Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theriogenology ; 83(9): 1493-501, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25784452

RESUMEN

Oocyte aging due to delayed fertilization is associated with declining quality and developmental potential. Intracellular calcium (Ca(2+)) concentration ([Ca(2+)]i) regulates oocyte growth, maturation, and fertilization and has also been implicated in aging. Using bovine oocytes, we tested the hypothesis that oocyte aging could be delayed by reducing [Ca(2+)]ivia blocking the influx of extracellular Ca(2+) or chelating ooplasmic free Ca(2+). After IVM, cumulus-oocyte complexes or denuded oocytes were cultured in medium supplemented with 1-octanol, phorbol 12-myristate 13-acetate, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis-acetoxymethyl ester (BAPTA-AM) to manipulate [Ca(2+)]i. Addition of 1-mM 1-octanol increased blastocyst development rates in the cumulus-oocyte complexes aged for 6 hours by IVF and for 6, 12, and 24 hours by parthenoactivation, and this effect was independent of the presence of cumulus cells. The intracellular levels of ATP, Glutathione, and Glutathione disulfide were not affected by 1-octanol, but [Ca(2+)]i was significantly decreased. When oocytes were cultured in Ca(2+)-free medium for 12 hours, the blastocyst development rate was greater and the beneficial effects of 1-octanol on oocyte aging were abolished. However, when the medium was supplemented with phorbol 12-myristate 13-acetate, [Ca(2+)]i increased and the blastocyst development rate decreased. Moreover, BAPTA-AM reduced [Ca(2+)]i and increased blastocyst development rates after IVF or parthenoactivation. We conclude that the age-associated developmental potency decline was delayed by blocking the influx of extracellular Ca(2+) or reducing ooplasmic free Ca(2+). 1-Octanol, BAPTA-AM, or Ca(2+)-free medium could be used to lengthen the fertilization windows of aged bovine oocytes.


Asunto(s)
Calcio/metabolismo , Bovinos/fisiología , Oocitos/efectos de los fármacos , 1-Octanol/farmacología , Factores de Edad , Animales , Calcio/química , Senescencia Celular , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Desarrollo Embrionario/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Oocitos/fisiología , Acetato de Tetradecanoilforbol/farmacología
2.
J Dairy Sci ; 97(11): 6917-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25242422

RESUMEN

Interferon-τ (IFNT), produced in ruminants by embryonic trophoblastic cells before implantation, is involved in the maternal recognition of pregnancy. It is a pleiotropic molecule that alters the synthesis of endometrial proteins and inhibits the proliferation of some cells. The present study investigated the effects of recombinant bovine IFNT on the development of early-stage bovine embryos and the molecular mechanism underlying this effect. This study demonstrated that expression of mRNA encoding type I IFN receptor subunits was detectable from d 4 to 8 in in vitro fertilized (IVF) bovine embryos. A considerable number of IVF (n = 1,941) and parthenogenetic activated (n = 1,552) bovine embryos demonstrated that supplementing the culture medium with IFNT (100 ng/mL) produced a greater percentage of blastocysts, and the total cell number within the resulting blastocysts was higher. In addition, IFNT upregulated the expression levels of both mRNA and protein for connexin 43 (GJA1) and E-cadherin (CDH1) and expression levels for granulocyte-macrophage colony-stimulating factor and insulin-like growth factor 2 mRNA but not for their proteins in d 8 embryos. However, IFNT inhibited mRNA expression for leukemia inhibitory factor (LIF), LIF receptor α, and the sodium/potassium-transporting ATPase subunit ß-1. We concluded that IFNT promoted the development of bovine embryos by upregulating the expression of GJA1 and CDH1. Thus, supplementing embryo cultures or transfer medium with IFNT may stimulate embryo development and improve embryo transfer efficiency.


Asunto(s)
Cadherinas/metabolismo , Bovinos/embriología , Conexina 43/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Interferón Tipo I/farmacología , Proteínas Gestacionales/farmacología , Animales , Blastocisto/metabolismo , Bovinos/fisiología , Transferencia de Embrión/veterinaria , Femenino , Fertilización In Vitro/veterinaria , Embarazo , ARN Mensajero/metabolismo , Proteínas Recombinantes/farmacología , Regulación hacia Arriba
3.
Theriogenology ; 76(7): 1207-14, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21820723

RESUMEN

Dromedary camel oocytes have the ability to spontaneous parthenogenetic activation and development in vivo and in vitro. The present study was conducted to investigate changes in mitochondrial distribution, adenosine triphosphate (ATP), and glutathione (GSH) contents and [Ca(2+)] oscillation during in vitro maturation and spontaneous parthenogentic activation of dromedary camel oocytes. Dromedary camel cumulus-oocyte complexes (COCs) were matured in TCM199 medium supplemented with 10% FCS + 10 µg/mL FSH + 10 IU hCG + 10 IU eCG + 10 ng/mL EGF and 50 µg/mL gentamycine. Maturation was performed at 38.5 °C under 5% CO(2) in humidified air for 40 h. After maturation and removal of cumulus cells, oocytes were classified into: immature cultured (Group 1); metaphase II (M II, Group 2); and spontaneously parthenogenetically activated (with 2 polar bodies, Group 3); cleaved embryos (Group 4); and immature oocytes served as a control (Group 5). Cytoplasmic mitochondrial distribution, ATP-GSH contents, calcium [Ca(2+)] oscillation were determined. Results indicated that M II and spontaneously parthenogenetically activated oocytes represent 37.53% and 32.67% of the cultured oocytes, respectively, and 3.3% cleaved and developed to 2-16-cell stage embryos. Mitochondrial distribution, ATP-GSH contents and [Ca(2+)] oscillation were significantly (P < 0.01) differ between immature and matured dromedary camel oocytes. Mitochondrial distribution showed clustering form in matured oocytes without polar body. High polarized mitochondrial distribution (HPM) was detected in M II and spontaneously parthenogenetically activated oocytes, and the intensity of MitoTracker Red was higher in spontaneously parthenogenetically activated than M II. ATP-GSH contents and the duration of [Ca(2+)] oscillation were significantly (P < 0.01) higher in spontaneously parthenogenetically activated than M II oocytes or that matured without polar body. In conclusion, the higher incidence of spontaneously parthenogenetically activated in vitro matured dromedary camel oocytes could be attributed to the high polarized mitochondrial distribution associated with significantly higher ATP-GSH contents and duration of [Ca(2+)] oscillation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Camelus , Glutatión/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Mitocondrias/metabolismo , Oocitos/metabolismo , Animales , Polaridad Celular , Femenino , Mitocondrias/ultraestructura , Oocitos/ultraestructura
4.
J Pineal Res ; 47(4): 318-23, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19817971

RESUMEN

This study focused on the effect of melatonin on in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Melatonin was measured in porcine follicular fluid of follicles of different sizes in the same ovary. Melatonin exists in follicular fluid, and the concentration is approximately 10(-11) m. Its concentration decreased as the diameter of follicle increased, which suggests an effect of melatonin on oocyte maturation. Therefore, immature oocytes were cultured in vitro in maturation medium supplemented with melatonin (10(-11), 10(-9), 10(-7), 10(-5) and 10(-3) m) or without melatonin. The oocytes at maturation stage were collected and activated. The parthenogenetic embryos were cultured and observed in medium supplemented with or without melatonin. Fresh immature oocytes without melatonin treatment were used as control. When only maturation medium was supplemented with 10(-9) m melatonin, the cleavage rate, blastocyst rate and the cell number of blastocyst (70 +/- 4.5%, 28 +/- 2.4% and 50 +/- 6.5%) were significantly higher (P < 0.05) than that of controls; when only culture medium was supplemented with melatonin, the highest cleavage rate, blastocyst rate and the cell number of blastocyst was observed at 10(-7) m melatonin, which were significantly higher than that of controls (P < 0.05). The best results (cleavage rates 79 +/- 8.4%, blastocyst rates 35 +/- 6.7%) were obtained when both the maturation and culture medium were supplemented with 10(-9) m melatonin respectively (P < 0.05). In conclusion, exogenous melatonin at the proper concentration may improve the in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Further research is needed to identify the effect of melatonin on in vitro and in vivo oocyte maturation and embryo development in porcine.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Líquido Folicular/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Oocitos/citología , Oocitos/efectos de los fármacos , Animales , Blastocisto/efectos de los fármacos , Células Cultivadas , Desarrollo Embrionario/efectos de los fármacos , Femenino , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA