Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 156, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641811

RESUMEN

BACKGROUND: Accurately identifying drug-target interaction (DTI), affinity (DTA), and binding sites (DTS) is crucial for drug screening, repositioning, and design, as well as for understanding the functions of target. Although there are a few online platforms based on deep learning for drug-target interaction, affinity, and binding sites identification, there is currently no integrated online platforms for all three aspects. RESULTS: Our solution, the novel integrated online platform Drug-Online, has been developed to facilitate drug screening, target identification, and understanding the functions of target in a progressive manner of "interaction-affinity-binding sites". Drug-Online platform consists of three parts: the first part uses the drug-target interaction identification method MGraphDTA, based on graph neural networks (GNN) and convolutional neural networks (CNN), to identify whether there is a drug-target interaction. If an interaction is identified, the second part employs the drug-target affinity identification method MMDTA, also based on GNN and CNN, to calculate the strength of drug-target interaction, i.e., affinity. Finally, the third part identifies drug-target binding sites, i.e., pockets. The method pt-lm-gnn used in this part is also based on GNN. CONCLUSIONS: Drug-Online is a reliable online platform that integrates drug-target interaction, affinity, and binding sites identification. It is freely available via the Internet at http://39.106.7.26:8000/Drug-Online/ .


Asunto(s)
Aprendizaje Profundo , Interacciones Farmacológicas , Sitios de Unión , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos
2.
Food Chem ; 450: 139296, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636381

RESUMEN

Advanced targeted nanoparticles (NPs) were designed to enhance the targeted delivery of resveratrol (RES) and quercetin (QUE) by utilizing carboxymethyl chitosan (CTS) and Jiuzao glutelin isolate (JGI) conjugates. Briefly, RES and QUE were encapsuled within CTS-JGI-2 (CTS/JGI, m/m, 2:1). The carrier's targeting properties were further improved through the incorporation of folic acid (FA) and polyethylenimine (PEI). Moreover, the stability against digestion was enhanced by incorporating baker yeast cell walls (BYCWs) to construct RES-QUE/FA-PEI/CTS-JGI-2/MAT/BYCW NPs. The results demonstrated that FA-PEI/CTS-JGI-2/MAT/BYCW NPs could improve cellular uptake and targeting property of RES and QUE through endocytosis of folic acid receptors (FOLRs). Additionally, RES-QUE successfully alleviated LPS- and DSS-induced inflammation by regulating NF-κB/IkBa/AP-1 and AMPK/SIRT1signaling pathways and reducing the secretion of inflammatory mediators and factors. These findings indicate FA-PEI/CTS-JGI-2/MAT/BYCW NPs hold promise as an oral drug delivery system with targeted delivery capacities for functional substances prone to instability in dietary supplements.


Asunto(s)
Quitosano , Ácido Fólico , Nanopartículas , Quercetina , Resveratrol , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Ácido Fólico/química , Ácido Fólico/farmacología , Quercetina/química , Quercetina/análogos & derivados , Quercetina/farmacología , Quercetina/administración & dosificación , Nanopartículas/química , Resveratrol/química , Resveratrol/farmacología , Resveratrol/administración & dosificación , Animales , Ratones , Humanos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Células RAW 264.7
3.
J Nutr Biochem ; 129: 109638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583499

RESUMEN

Maternal infection during pregnancy is an important cause of autism spectrum disorder (ASD) in offspring, and inflammatory infiltration caused by maternal immune activation (MIA) can cause neurodevelopmental disorders in the fetus. Medicine food homologous (MFH) refers to a traditional Chinese medicine (TCM) concept, which effectively combines food functions and medicinal effects. However, no previous study has screened, predicted, and validated the potential targets of MFH herbs for treating ASD. Therefore, in this study, we used comprehensive bioinformatics methods to screen and analyze MFH herbs and drug targets on a large scale, and identified resveratrol and Thoc5 as the best small molecular ingredient and drug target, respectively, for the treatment of MIA-induced ASD. Additionally, the results of in vitro experiments revealed that resveratrol increased the expression of Thoc5 and effectively inhibited lipopolysaccharide-induced inflammatory factor production by BV2 cells. Moreover, in vivo, resveratrol increased the expression of Thoc5 and effectively inhibited placental and fetal brain inflammation in MIA pregnancy mice, and improved ASD-like behaviors in offspring.


Asunto(s)
Trastorno del Espectro Autista , Proteínas Nucleares , Efectos Tardíos de la Exposición Prenatal , Resveratrol , Animales , Femenino , Masculino , Ratones , Embarazo , Trastorno del Espectro Autista/inmunología , Trastorno Autístico/inducido químicamente , Trastorno Autístico/inmunología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Resveratrol/farmacología , Proteínas Nucleares/efectos de los fármacos , Proteínas Nucleares/inmunología , Proteínas Nucleares/metabolismo
4.
Phytomedicine ; 128: 155386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522317

RESUMEN

BACKGROUND: Maternal immune activation (MIA) is a significant factor inducing to autism spectrum disorder (ASD) in offspring. The fundamental principle underlying MIA is that inflammation during pregnancy impedes fetal brain development and triggers behavioural alterations in offspring. The intricate pathogenesis of ASD renders drug treatment effects unsatisfactory. Traditional Chinese medicine has strong potential due to its multiple therapeutic targets. Yigansan, composed of seven herbs, is one of the few that has been proven to be effective in treating neuro-psychiatric disorders among numerous traditional Chinese medicine compounds, but its therapeutic effect on ASD remains unknown. HYPOTHESIS: Yigansan improves MIA-induced ASD-like behaviours in offspring by regulating the IL-17 signalling pathway. METHODS: Pregnant C57BL/6J mice were intraperitoneally injected with poly(I:C) to construct MIA models and offspring ASD models. Network analysis identified that the IL-17A/TRAF6/MMP9 pathway is a crucial pathway, and molecular docking confirmed the binding affinity between the monomer of Yigansan and target proteins. qRT-PCR and Western blot were used to detect the expression levels of inflammatory factors and pathway proteins, immunofluorescence was used to detect the distribution of IL-17A, and behavioural tests were used to evaluate the ASD-like behaviours of offspring. RESULTS: We demonstrated that Yigansan can effectively alleviate MIA-induced neuroinflammation of adult offspring by regulating the IL-17A/TRAF6/MMP9 pathway, and the expression of IL-17A was reduced in the prefrontal cortex. Importantly, ASD-like behaviours have been significantly improved. Moreover, we identified that quercetin is the effective monomer for Yigansan to exert therapeutic effects. CONCLUSION: Overall, this study was firstly to corroborate the positive therapeutic effect of Yigansan in the treatment of ASD. We elucidated the relevant molecular mechanism and regulatory pathway involved, determined the optimal therapeutic dose and effective monomer, providing new solutions for the challenges of drug therapy for ASD.


Asunto(s)
Trastorno del Espectro Autista , Medicamentos Herbarios Chinos , Interleucina-17 , Metaloproteinasa 9 de la Matriz , Ratones Endogámicos C57BL , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Animales , Interleucina-17/metabolismo , Femenino , Embarazo , Factor 6 Asociado a Receptor de TNF/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ratones , Transducción de Señal/efectos de los fármacos , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/inducido químicamente , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular , Poli I-C/farmacología , Masculino , Efectos Tardíos de la Exposición Prenatal
5.
Front Endocrinol (Lausanne) ; 15: 1368853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501107

RESUMEN

Background: Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) have been reported to combat saturated fatty acid (SFA)-induced cellular damage, however, their clinical effects on patients with metabolic diseases such as diabetes and hyperlipidemia are still controversial. Since comparative studies of the effects of these two types of unsaturated fatty acids (UFAs) are still limited. In this study, we aimed to compare the protective effects of various UFAs on pancreatic islets under the stress of SFA-induced metabolic disorder and lipotoxicity. Methods: Rat insulinoma cell line INS-1E were treated with palmitic acid (PA) with or without UFAs including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and oleic acid (OA) to determine cell viability, apoptosis, endoplasmic reticulum (ER) stress, and inflammatory. In vivo, male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 w. Then the lard in HFD was partially replaced with fish oil (FO) and olive oil (OO) at low or high proportions of energy (5% or 20%) to observe the ameliorative effects of the UFA supplement. Results: All UFAs significantly improved PA-induced cell viability impairment in INS-1E cells, and their alleviation on PA induced apoptosis, ER stress and inflammation were confirmed. Particularly, OA had better effects than EPA, DHA, and AA on attenuating cellular ER stress. In vivo, the diets with a low proportion of UFAs (5% of energy) had limited effects on HFD induced metabolic disorder, except for a slight improved intraperitoneal glucose tolerance in obese mice. However, when fed diets containing a high proportion of UFAs (20% of energy), both the FO and OO groups exhibited substantially improved glucose and lipid metabolism, such as decrease in total cholesterol (TC), low-density lipoprotein (LDL), fasting blood glucose (FBG), and fasting blood insulin (FBI)) and improvement of insulin sensitivity evidenced by intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT). Unexpectedly, FO resulted in abnormal elevation of the liver function index aspartate aminotransferase (AST) in serum. Pathologically, OO attenuated HFD-induced compensatory hyperplasia of pancreatic islets, while this effect was not obvious in the FO group. Conclusions: Both MUFAs and PUFAs can effectively protect islet ß cells from SFA-induced cellular lipotoxicity. In particular, both OA in vitro and OO in vivo showed superior activities on protecting islets function and enhance insulin sensitivity, suggesting that MUFAs might have greater potential for nutritional intervention on diabetes.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Insulinas , Humanos , Ratas , Ratones , Animales , Masculino , Ácidos Grasos Monoinsaturados , Ratones Endogámicos C57BL , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos , Ácido Palmítico , Ácido Eicosapentaenoico/farmacología , Glucosa
6.
Epilepsy Res ; 200: 107297, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215605

RESUMEN

BACKGROUND: Dietary nutrient supplements are helpful in the treatment of many diseases, but their effect on epilepsy is still controversial. This study aimed to evaluate the association between dietary intake of multiple nutrients and epilepsy. METHODS: A total of 3963 participants from the NHANES database were involved in this study. We compared the dietary intake of 14 nutrients between the normal population and those with epilepsy. Univariable and multivariable logistic regression were conducted to evaluate the association of these nutrients with epilepsy. RESULTS: Compared with the normal population, the epilepsy patients showed lower intakes of protein, vitamin B1, vitamin B6, Fe, and Zn. Multivariable logistic regression showed the negative association of vitamin B1 (OR = 0.513, 95% CI: 0.293, 0.897) with epilepsy. When vitamin B1 was divided into 4 groups according to quartiles, the highest quartile showed a lower odds ratio (OR = 0.338, 95% CI: 0.115, 0.997) than that of the lowest quartile. In different population stratifications, the association of vitamin B1 with epilepsy was different. Vitamin B1 was negatively associated with the odds ratio of epilepsy among the elderly (OR = 0.243), low-income population (OR = 0.337), and current smokers (OR = 0.283). CONCLUSION: Epilepsy patients had significantly lower intakes of vitamin B1, which was inversely associated with epilepsy risk. More detailed clinical trials are needed to accurately evaluate nutritional supplements for epilepsy.


Asunto(s)
Dieta , Ingestión de Alimentos , Humanos , Anciano , Encuestas Nutricionales , Estudios Transversales , Tiamina
7.
Int J Biol Macromol ; 260(Pt 2): 129613, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246440

RESUMEN

The effects of pulsed electric field combined with ultrasound (PEF-US) on the recovery of polyphenols from litchi peels were investigated. In addition, the optimal purification parameters for polyphenol extracts and their biological activities were also explored in this study. Single-factor and orthogonal experiments were used to optimize the extraction conditions of polyphenols. After optimization, the total phenol content (TPC) of the sample extracted by PEF-US was 2.30 times higher than that of the sample extracted by traditional hot-water extraction. The mechanism of PEF-US enhancing polyphenol recovery was also revealed by morphological analysis of the powder surface. LX-7 was the best resin by comparing the purification effect of nine macroporous resins. The optimum conditions for purification of litchi peel polyphenols by LX-7 resin were also optimized through adsorption and desorption experiments. UHPLC-MS and HPLC results revealed that gentisic acid, catechin, procyanidin A2 and procyanidin B1 are four main substances in purified samples. The results of bioactivity experiments showed that the purified polyphenol samples had strong antioxidant and antibacterial activity. Overall, PEF-US is an efficient method for recovering polyphenols from litchi peels. Our study also provides a strategy for the comprehensive utilization of fruit processing waste.


Asunto(s)
Litchi , Polifenoles , Frutas/química , Extractos Vegetales , Antioxidantes/farmacología
8.
World J Gastroenterol ; 29(45): 5988-6016, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38130997

RESUMEN

BACKGROUND: Traditional Chinese medicine has used the drug Pien Tze Huang (PTH), a classic prescription, to treat autoimmune hepatitis (AIH). However, the precise mode of action is still unknown. AIM: To investigate the mechanism of PTH in an AIH mouse model by determining the changes in gut microbiota structure and memory regulatory T (mTreg) cells functional levels. METHODS: Following induction of the AIH mouse model induced by Concanavalin A (Con A), prophylactic administration of PTH was given for 10 d. The levels of mTreg cells were measured by flow cytometry, and intestinal microbiota was analyzed by 16S rRNA analysis, while western blotting was used to identify activation of the toll-like receptor (TLR)2, TLR4/nuclear factor-κB (NF-κB), and CXCL16/CXCR6 signaling pathways. RESULTS: In the liver of mice with AIH, PTH relieved the pathological damage and reduced the numbers of T helper type 17 cells and interferon-γ, tumor necrosis factor-alpha, interleukin (IL)-1ß, IL-2, IL-6, and IL-21 expression. Simultaneously, PTH stimulated the abundance of helpful bacteria, promoted activation of the TLR2 signal, which may enhance Treg/mTreg cells quantity to produce IL-10, and suppressed activation of the TLR4/NF-κB and CXCL16/CXCR6 signaling pathways. CONCLUSION: PTH regulates intestinal microbiota balance and restores mTreg cells to alleviate experimental AIH, which is closely related to the TLR/CXCL16/CXCR6/NF-κB signaling pathway.


Asunto(s)
Microbioma Gastrointestinal , Hepatitis A , Hepatitis Autoinmune , Ratones , Animales , Hepatitis Autoinmune/tratamiento farmacológico , Hepatitis Autoinmune/etiología , Hepatitis Autoinmune/prevención & control , FN-kappa B/metabolismo , Linfocitos T Reguladores/metabolismo , Concanavalina A , Receptor Toll-Like 4/metabolismo , ARN Ribosómico 16S
9.
J Integr Med ; 21(6): 584-592, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37989697

RESUMEN

OBJECTIVE: To explore whether the ethanol extract of Herpetospermum caudigerum Wall (EHC), a Xizang medicinal plant traditionally used for treating liver diseases, can improve imiquimod-induced psoriasis-like skin inflammation. METHODS: Immunohistochemistry and immunofluorescence staining were used to determine the effects of topical EHC use in vivo on the skin pathology of imiquimod-induced psoriasis in mice. The protein levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17A (IL-17A) in mouse skin samples were examined using immunohistochemical staining. In vitro, IFN-γ-induced HaCaT cells with or without EHC treatment were used to evaluate the expression of keratinocyte-derived intercellular cell adhesion molecule-1 (ICAM-1) and chemokine CXC ligand 9 (CXCL9) using Western blotting and reverse transcription-quantitative polymerase chain reaction. The protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132 were utilized to validate the EHC-mediated mechanism underlying degradation of ICAM-1 and CXCL9. RESULTS: EHC improved inflammation in the imiquimod-induced psoriasis mouse model and reduced the levels of IFN-γ, TNF-α, and IL-17A in psoriatic lesions. Treatment with EHC also suppressed ICAM-1 and CXCL9 in epidermal keratinocytes. Further mechanistic studies revealed that EHC suppressed keratinocyte-derived ICAM-1 and CXCL9 by promoting ubiquitin-proteasome-mediated protein degradation rather than transcriptional repression. Seven primary compounds including ehletianol C, dehydrodiconiferyl alcohol, herpetrione, herpetin, herpetotriol, herpetetrone and herpetetrol were identified from the EHC using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry. CONCLUSION: Topical application of EHC ameliorates psoriasis-like skin symptoms and improves the inflammation at the lesion sites. Please cite this article as: Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J Integr Med. 2023; 21(6): 584-592.


Asunto(s)
Interleucina-17 , Psoriasis , Animales , Ratones , Interleucina-17/efectos adversos , Interleucina-17/metabolismo , Molécula 1 de Adhesión Intercelular , Imiquimod/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Ligandos , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Queratinocitos , Inflamación/tratamiento farmacológico , Quimiocinas/efectos adversos , Quimiocinas/metabolismo , Interferón gamma/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
10.
Food Funct ; 14(18): 8545-8557, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37656435

RESUMEN

A novel Chardonnay wine flavored with either green tea or black tea was subjected to bottle aging for 9 months, and the physicochemical properties, antioxidant capacity, total phenolic content, volatile content and sensory properties were monitored. There were 272 phenolic and non-phenolic compounds characterized in the aged Chardonnay wines, including newly formed 9, 1, 3 and 8 phenolic compounds and 10, 6, 1 and 6 non-phenolic compounds after aging for 1, 3, 6 and 9 months, respectively. For all the aged wines, catechin was determined as the most abundant phenolic compound, and epigallocatechin mainly contributed toward the antioxidant power. A total of 54 volatile compounds were identified in the aged Chardonnay wines, including 17 odor-active compounds. The aging process diminished floral and fruity odors, but intensified green odor. The consumer study revealed the highest consumer liking for 1% (w/v) black tea infused wine. This study revealed the quality and bioactivity of this novel flavored wine type during aging which is critical to understand the shelf-life and functionality of the product.


Asunto(s)
Camellia sinensis , Vino , Antioxidantes , Fenoles ,
11.
J Colloid Interface Sci ; 652(Pt B): 1108-1116, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657211

RESUMEN

Due to the high selectivity and non-invasive property, phototherapy has attracted increasing attention in the treatment of cancer. Targeted delivery and retention of photoactive agents in tumor tissue is of great significance and importance for safe and efficient phototherapy. Herein, we report a multifunctional nanomaterial photothermal agent, namely amino-modified graphene oxide (AGO) for anti-oral cancer photothermal therapy (PTT). Compared to the parental graphene oxide (GO) which has a negative charge and weak photothermal effect, AGO possesses a positive charge (∼+50 mV) and the significantly enhanced photothermal effect. Positive charge allows AGO to efficiently interact with tumor cells and retain in tumor tissue after intratumor injection. The enhanced photothermal effect allows AGO to achieve the tunable and efficient PTT. In vitro results show that AGO (15 µg/mL) reduces the viability of HSC-3 cells (oral squamous cell carcinoma cell line) to 5% under near infrared (NIR) irradiation (temperature increased to 58.4 °C). In vivo antitumor study shows that intratumor delivery of AGO (200 µg/mouse) has no inhibition effects on tumor growth (454% of initial tumor size) without NIR. With a single dose of NIR irradiation, however, AGO significantly reduces the tumor size to 25% of initial size in 1 of 4 mice, and even induces the complete tumor ablation in 3 of 4 mice. Furthermore, the injected AGO falls off along with the scab after PTT. Our findings indicate that AGO is a potential nano-photothermal agent for tunable, convenient and efficient anticancer PTT.

12.
Food Chem ; 424: 136386, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37236083

RESUMEN

In this study, soy protein isolate (SPI) was modified by a pulsed electric field (PEF) combined with pH shifting treatment (10 kV/cm, pH 11) to prepare SPI nanoparticles (PSPI11) for efficient loading of lutein. The results showed that when the mass ratio of SPI to lutein was 25:1, the encapsulation efficiency of lutein in PSPI11 increased from 54% to 77%, and the loading capacity increased by 41% compared to the original SPI. The formed SPI-lutein composite nanoparticles (PSPI11-LUTNPs) had smaller, more homogeneous sizes and larger negative charges than SPI7-LUTNPs. The combined treatment favored the unfolding of the SPI structure and could expose its interior hydrophobic groups to bind with lutein. Nanocomplexation with SPIs significantly improved the solubility and stability of lutein, with PSPI11 showing the greatest improvement. As a result, PEF combined with pH shifting pretreatment is an effective method for developing SPI nanoparticles loaded and protected with lutein.


Asunto(s)
Nanopartículas , Proteínas de Soja , Proteínas de Soja/química , Luteína , Nanopartículas/química , Interacciones Hidrofóbicas e Hidrofílicas , Concentración de Iones de Hidrógeno
13.
Int J Med Mushrooms ; 25(5): 75-90, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37183920

RESUMEN

The intracellular triterpene yield from Ganoderma atrum was enhanced by optimization based on single-factor experiments, Plackett-Burman experimental design (PBED) and response surface methodology (RSM) under liquid fermentation conditions. The optimal medium composition (g·L-1) was glucose (46.0), bean cake powder (30.2), KH2PO4 (2.0), CaCl2 (3.0), MgSO4 (1.5), FeSO4 (0.2), and pH 6.0. Under the optimal conditions, the highest triterpene yield of 0.527 g·L-1 was obtained, which was 4.705-fold higher than before optimization. The fermented powder that was collected from the optimal medium was subjected to simulated gastrointestinal digestion, with differences resulting from extraction in different digestive juices (purified water, simulated gastric digestive juice, simulated gastrointestinal digestive juice). The content of triterpenes and polysaccharides increased, except for total phenol content. In terms of the antioxidant activity, the 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH+⋅) scavenging activity gradually decreased whereas the 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+⋅) scavenging activity first decreased and then increased. In terms of enzyme viability, the activity of α-amylase (α-AL) and α-glucosidase (α-GC) in the digestive juices decreased dramatically. The main bioactive components of G. atrum and their bioactivity in digestive juices were evaluated, providing a reference for the effective use of fermented power from G. atrum.


Asunto(s)
Triterpenos , Polvos , Antioxidantes/química , Digestión
14.
Int J Biol Macromol ; 240: 124482, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37076073

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has strong resistance to antibiotic therapy. In this regard, developing antibiotic-free antibacterial agents is of great significance to treat MRSA infections. Herein, we loaded Ti3C2Tx MXene nanomaterial in the non-crosslinked chitosan (CS) hydrogel. The obtained MX-CS hydrogel is expected to not only adsorb MRSA cells via CS-MRSA interactions, but also gather the MXene-induced photothermal hyperthermia, achieving the efficient and intensive anti-MRSA photothermal therapy. As a result, under NIR irradiation (808 nm, 1.6 W/cm2, 5 min), MX-CS showed a greater photothermal effect than MXene alone did (30 µg/mL, 49.9 °C for MX-CS and 46.5 °C for MXene). Importantly, MRSA cells were rapidly adsorbed on MX-CS hydrogel (containing 30 µg/mL MXene) and completely inhibited (99.18 %) under NIR irradiation for 5 min. In contrast, MXene (30 µg/mL) and CS hydrogel alone only inhibited 64.52 % and 23.72 % MRSA, respectively, significantly lower than the inhibition caused by MX-CS (P < 0.001). Interestingly, when the hyperthermia was depleted by a 37 °C water bath, the bacterial inhibition rate of MX-CS significantly decreased to 24.65 %. In conclusion, MX-CS hydrogel has a remarkable synergistic anti-MRSA activity by gathering MRSA cells and MXene-induced hyperthermia, and may have great potentials in treating MRSA-infected diseases.


Asunto(s)
Quitosano , Staphylococcus aureus Resistente a Meticilina , Quitosano/farmacología , Hidrogeles/farmacología , Titanio/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
15.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068253

RESUMEN

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Núcleo Subtalámico , Ratones , Animales , Núcleo Entopeduncular , Tálamo , Trastornos Parkinsonianos/terapia , Receptores Histamínicos
16.
Food Res Int ; 165: 112467, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869480

RESUMEN

In this work, thermomechanically micronized sugar beet pulp (MSBP), a micron-scaled plant-based byproduct comprised of soluble elements (∼40 wt%) and insoluble fibrous particles (IFPs, ∼60 wt%), was used as a sole stabilizer for oil-in-water emulsion fabrication. The influence of emulsification parameters on the emulsifying properties of MSBP was investigated, including emulsification techniques, MSBP concentration, and oil weight fraction. High-speed shearing (M1), ultrasonication (M2), and microfludization (M3) were used to fabricate oil-in-water emulsions (20% oil) with 0.60 wt% MSBP as stabilizer, in which the d4,3 value was 68.3, 31.5, and 18.2 µm, respectively. Emulsions fabricated by M2 and M3 (higher energy input) were more stable than M1 (lower energy input) during long-term storage (30 days) as no significant increase of d4,3. As compared to M1, the adsorption ratio of IFPs and protein was increased from ∼0.46 and ∼0.34 to ∼0.88 and ∼0.55 by M3. Fabricated by M3, the creaming behavior of emulsions was completely inhibited with 1.00 wt% MSBP (20% oil) and 40% oil (0.60 wt% MSBP), showing a flocculated state and could be disturbed by sodium dodecyl sulfate. The gel-like network formed by IFPs could be strengthened after storage as both viscosity and module were significantly increased. During emulsification, the co-stabilization effect of the soluble elements and IFPs enabled a compact and hybrid coverage onto the droplet surface, which acted as a physical barrier to endow the emulsion with robust steric repulsion. Altogether, these findings suggested the feasibility of using plant-based byproducts as oil-in-water emulsion stabilizers.


Asunto(s)
Beta vulgaris , Emulsiones , Verduras , Excipientes , Azúcares , Agua
17.
Int J Biol Macromol ; 226: 679-689, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36436597

RESUMEN

Inspired by the emulsion stability of sugar beet pulp pectin, the hydrophobic protein fraction in sugar beet pulp (SBP) is expected to feature high interfacial activity. This work retrieved alkaline extracted protein-polysaccharide conjugates (AEC) from partially depectinized SBP by hot alkaline extraction. AEC was protein-rich (57.20 %), and the polysaccharide mainly comprised neutral sugar, which adopted a rhamnogalacturonan-I pectin-like structure. The hydrophobic polypeptide chains tangled as a dense 'core' with polysaccharide chains attached as a hydrated 'shell' (hydrodynamic radius of ~110 nm). AEC could significantly decrease the oil-water interfacial tension (11.58 mN/m), featuring superior emulsification performance than three control emulsifiers, especially the excellent emulsifying stability (10 % oil) as the emulsion droplet size of 0.438 and 0.479 µm for fresh and stored (60 °C, 5 d) emulsions, respectively. The relationship of molecular structure to emulsification was investigated by specific enzymic modification, suggesting the intact macromolecular structure was closely related to emulsifying activity and that the NS fraction contributed greatly to emulsifying stability. Moreover, AEC was highly efficient to stabilize gel-like high internal phase emulsions (oil fraction 0.80) with low concentration (0.2 %) and even high ionic strength (0-1000 mM). Altogether, valorizing AEC as an emulsifier is feasible for high-value utilization of SBP.


Asunto(s)
Beta vulgaris , Emulsiones/química , Beta vulgaris/química , Emulsionantes/química , Pectinas/química , Tensión Superficial
18.
Chem Biodivers ; 19(11): e202200757, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36226702

RESUMEN

Dried ginger is a commonly used stomachic. Dried ginger is often used as a gastric protector to treat stomach-related diseases. However, the effect of dried ginger on energy metabolism in stomach tissue of rats under physiological condition has not been studied. In this study, different doses of water extract of dried ginger were given to rats for 4 weeks. The activity of Na+ -K+ -ATPase, Ca2+ -Mg2+ -ATPase, SDH (succinate dehydrogenase) enzyme, ATP content, mitochondrial metabolic rate and mitochondrial number in stomach tissue of rats were measured. Analysis of potential biomarkers related to the effect of dried ginger on energy metabolism in stomach tissue of rats by metabonomics, and their metabolic pathways were also analyzed. The results revealed that there was no significant difference in Na+ -K+ -ATPase in high-dose group (GJH), medium-dose group (GJM) and low-dose group (GJL) compared to the Control group. The Ca2+ -Mg2+ -ATPase activity was significantly increased in stomach tissue of GJH group and GJM group, but there were no significant changes in stomach tissue of GJL group. The SDH activity and the ATP levels were significantly increased in stomach tissue of GJH group, GJM group and GJL group. The mitochondrial metabolic rate was significantly increased in GJL group, but there was no significant change in GJM group and was inhibited in GJH group. These effects might be mediated by arginine biosynthesis, glutathione metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, arginine and proline metabolism, purine metabolism pathway.


Asunto(s)
Metabolismo Energético , Zingiber officinale , Animales , Ratas , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Metabolismo Energético/efectos de los fármacos , Zingiber officinale/química , Estómago/efectos de los fármacos , Estómago/metabolismo , Metabolómica
19.
Phytomedicine ; 107: 154446, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36182799

RESUMEN

BACKGROUND: Brucea javanica oil (BJO) is the active substance extracted from the dry and mature fruit of Brucea javanica. Its pharmaceutical preparation, BJO emulsion (BJOE), is one of the most widely studied traditional Chinese medicine preparations for the treatment of malignancy. However, the unrevealed anti-tumor mechanism immensely limits further development of BJOE. PURPOSE: In this study, we delved into the anti-tumor mechanism of commercial BJOE, including its influence on the tumor microenvironment (TME) and the treatment effect when combined with anti-programmed cell death protein-1 (PD-1) therapy. METHODS: The cytotoxicity of BJOE was tested in different cells in vitro, and a Förster resonance energy transfer system was also constructed to predict the release behavior of BJOE in vivo. Then, a B16 melanoma mouse model was used to explore the combination of BJOE and anti-mouse PD-1 antibody therapy. In addition, mass cytometry was used to test the impact of both drugs on the TME. RESULTS: Out data revealed that BJOE did not directly kill tumor cells in vitro. However, BJOE was mainly released at the tumor site, converting an immunosuppressive TME into an immune-activated state, and its combination with anti-PD-1 therapy significantly inhibited the growth of melanoma and prolonged the survival time of the mice due to an increase in cytotoxic T lymph (CD8+ T) and helper/inducible T lymph (CD4+ T) cells in lymph nodes and tumors. CONCLUSIONS: Our work explored the anti-tumor mechanism of commercial BJOE and the regulation of cytokines by BJOE when it was combined with anti-PD-1 therapy in vivo. The combination of these therapies could increase the numbers of CD4+ T-cells, CD8+ T-cells, and effective natural killer cells and the ratio of MI/M2 macrophages in tumor tissues, promoting inflammatory activity and enhancing the anti-tumor effect. This study provides a theoretical basis for advancing the modern development of traditional Chinese medicine preparations and stands as a reference for clinically improving the efficacy of PD-1 antibodies.


Asunto(s)
Brucea , Animales , Brucea/química , Brucea javanica , Linfocitos T CD8-positivos/metabolismo , Muerte Celular , Línea Celular Tumoral , Citocinas/metabolismo , Emulsiones/farmacología , Factores Inmunológicos , Inmunoterapia , Ratones , Aceites de Plantas/farmacología
20.
Food Res Int ; 160: 111675, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36076386

RESUMEN

Sugar beet pulp (SBP), the main by-product of the beet sugar industry, has gained increasing attention due to its potential functional properties as a clean-label food ingredient. The aim of the present work was to optimize a food-grade approach for SBP micronization via harsh thermal pretreatment and ultrasonication, after which the micronized SBP was used as an emulsifier. Harsh thermal pretreatment substantially softened the compact particle structure of SBP, thereby improving breakage efficiency by reducing the ultrasonication time to 10 min (suspension stability of ∼100%). During ultrasonication, the particle size of SBP declined from ∼34 to ∼25 µm, which showed long and tangled morphology as fibers (diameter of 50-300 nm). The increased solubility enlarged the specific surface area of SBP from ∼0.6 to ∼3.5 g/m2, endowing it with a porous structure for improved ultrasonic energy adsorption, thereby preventing the degradation of the dissolved pectic polymers. The dissociation of SBP particles contributed to the enhancement of emulsification and was correlated with an increase in suspension stability. These findings provide a feasible strategy for the high added-value utilization of SBP.


Asunto(s)
Beta vulgaris , Adsorción , Beta vulgaris/química , Emulsionantes/química , Pectinas/química , Azúcares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA