Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 43(19): 3970-3978, 2018 Oct.
Artículo en Chino | MEDLINE | ID: mdl-30453725

RESUMEN

Artesunate (AS), a famous derivative of the artemisinin, is the basic treatment globally for mild to severe malaria infection due to the prominent advantages such as high efficiency, fast effect, low toxicity and not easy to produce resistance. More and more research reports have shown that AS and its active metabolites dihydroartemisinin (DHA) had various bioactivities in addition to antimalarial activity, attracting researchers to further study its new pharmacological effects in order to explore new use of the old drug. A comprehensive understanding of the pharmacokinetic characteristics of AS will be conducive to the further development of new pharmacological actions and clinical application of AS. Therefore, this paper would review the absorption, distribution, metabolism and excretion of AS in vivo, as well as the pharmacokinetics characteristics of AS and DHA after clinical administration of AS by intravenous (IV), intramuscular (IM), oral or rectal routes. The in vivo process and pharmacokinetic parameters of AS and DHA were compared between healthy volunteers, malaria patients, and special populations (children, women). Meanwhile, the research progress on pharmacological effects of AS and active metabolite DHA such as anti-tumor, anti-inflammatory, anti septic, antiangiogenic, anti-fibrosis and immunoregulation activities would be also reviewed, hoping to provide a theoretical basis for the further development and utilization of AS and its metabolites.


Asunto(s)
Antimaláricos/farmacología , Antimaláricos/farmacocinética , Artesunato/farmacología , Artesunato/farmacocinética , Humanos , Investigación
2.
Bioorg Med Chem Lett ; 24(6): 1581-8, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24529869

RESUMEN

Current treatment for hepatitis C is barely satisfactory, there is an urgent need to develop novel agents for combating hepatitis C virus infection. This study discovered a new class of thieno[2,3-b]pyridine derivatives as HCV inhibitors. First, a hit compound characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. And then, structure activity relationship study of the hit compound led to the discovery of several potent compounds without obvious cytotoxicity in vitro (12c, EC50=3.3µM, SI >30.3, 12b, EC50=3.5µM, SI >28.6, 10l, EC50=3.9µM, SI >25.6, 12o, EC50=4.5µM, SI >22.2, respectively). Although the mechanism of them had not been clearly elucidated, our preliminary optimization of this class of compounds had provided us a start point to develop new anti-HCV agents.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Piridinas/química , Antivirales/síntesis química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Piridinas/síntesis química , Piridinas/farmacología , Piridinas/toxicidad , Relación Estructura-Actividad , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA