Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1327-1334, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621980

RESUMEN

This study aims to investigate whether baicalin induces ferroptosis in HepG2 cells and decipher the underlying mechanisms based on network pharmacology and cell experiments. HepG2 cells were cultured in vitro and the cell viability was detected by the cell counting kit-8(CCK-8). The transcriptome data of hepatocellular carcinoma were obtained from the Cancer Genome Atlas(TCGA), and the ferroptosis gene data from FerrDb V2. The DEG2 package was used to screen the differentially expressed genes(DEGs), and the common genes between DEGs and ferroptosis genes were selected as the target genes that mediate ferroptosis to regulate hepatocellular carcinoma progression. The functions and structures of the target genes were analyzed by Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment with the thresholds of P<0.05 and |log_2(fold change)|>0.5. DCFH-DA probe was used to detect the changes in the levels of cellular reactive oxygen species(ROS) in each group. The reduced glutathione(GSH) assay kit was used to measure the cellular GSH level, and Fe~(2+) assay kit to determine the Fe~(2+) level. Real-time quantitative PCR(RT-PCR) was employed to measure the mRNA levels of glutathione peroxidase 4(GPX4) and solute carrier family 7 member 11(SLC7A11) in each group. Western blot was employed to determine the protein levels of GPX4, SLC7A11, phosphatidylinositol 3-kinase(PI3K), p-PI3K, protein kinase B(Akt), p-Akt, forkhead box protein O3a(FoxO3a), and p-FoxO3a in each group. The results showed that treatment with 200 µmol·L~(-1) baicalin for 48 h significantly inhibited the viability of HepG2 cells. Ferroptosis in hepatocellular carcinoma could be regulated via the PI3K/Akt signaling pathway. The cell experiments showed that baicalin down-regulated the expression of SLC7A11 and GPX4, lowered the GSH level, and increased ROS accumulation and Fe~(2+) production in HepG2 cells. However, ferrostatin-1, an ferroptosis inhibitor, reduced baicalin-induced ROS accumulation, up-regulated the expression of SLC7A11 and GPX4, elevated the GSH level, and decreased PI3K, Akt, and FoxO3a phosphorylation. In summary, baicalin can induce ferroptosis in HepG2 cells by inhibiting the ROS-mediated PI3K/Akt/FoxO3a pathway.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Flavonoides , Neoplasias Hepáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Especies Reactivas de Oxígeno , Células Hep G2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Transducción de Señal
2.
Heliyon ; 10(3): e24987, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333870

RESUMEN

Background: Many researchers have investigated the use of Chinese herbs to delay the progression of chronic kidney disease (CKD) through their effects on colonic microflora and microbiota-derived metabolites. However, whether FuZhengHuaYuJiangZhuTongLuo (FZHY) has effects that are similar to those of AST-120 on CKD needs to be elucidated. Methods: In this study, we compared the effects of FZHY and AST-120 on the colonic microbiota and plasma metabolites in the CKD rat model. We developed a unilateral ureteral obstruction (UUO)-induced CKD rat model and then administered FZHY and AST-120 to these model rats. Non-targeted metabolomic LC-MS analysis, 16S rRNA sequencing, and histopathological staining were performed on plasma, stool, and kidney tissues, respectively, and the joint correlation between biomarkers and metabolites of candidate bacteria was analyzed. Results: Our results showed that administering FZHY and AST-120 effectively ameliorated UUO-induced abnormal renal function and renal fibrosis and regulated the composition of microbiota and metabolites. Compared to the UUO model group, the p_Firmicutes and o_Peptostreptococcales_Tissierellales were increased, while 14 negative ion metabolites were upregulated and 21 were downregulated after FZHY treatment. Additionally, 40 positive ion metabolites were upregulated and 63 were downregulated. On the other hand, AST-120 treatment resulted in an increase in the levels of g_Prevotellaceae_NK3B31_group and f_Prevotellaceae, as well as 12 upregulated and 23 downregulated negative ion metabolites and 56 upregulated and 63 downregulated positive ion metabolites. Besides, FZHY increased the levels of candidate bacterial biomarkers that were found to be negatively correlated with some poisonous metabolites, such as 4-hydroxyretinoic acid, and positively correlated with beneficial metabolites, such as l-arginine. AST-120 increased the levels of candidate bacterial biomarkers that were negatively correlated with some toxic metabolites, such as glycoursodeoxycholic acid, 4-ethylphenol, and indole-3-acetic acid. Conclusion: FZHY and AST-120 effectively reduced kidney damage, in which, the recovery of some dysregulated bacteria and metabolites are probably involved. As their mechanisms of regulation were different, FZHY might play a complementary role to AST-120 in treating CKD.

3.
J Agric Food Chem ; 72(2): 983-998, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38189273

RESUMEN

Microbial transplantation in early life was a strategy to optimize the health and performance of livestock animals. This study aimed to investigate the effect of active ruminal solids microorganism supplementation on newborn lamb gut microbiota and serum metabolism. Twenty-four Youzhou dark newborn lambs were randomly divided into three groups: (1) newborn lambs fed with sterilized goat milk inoculated with sterilized normal saline (CON), supernatant from ruminal solids (SRS), or autoclaved supernatant from ruminal solids (ASRS). Results showed that SRS increased gut bacterial richness and community, downregulating the Firmicutes/Bacteroidetes ratio, and increased the abundance of some probiotics (Bacteroidetes, Spirochaetota, and Fibrobacterota), while reducing the abundance of Fusobacteriota, compared to the CON group. SRS also improved the plasma metabolic function, such as arachidonic acid metabolism, primary bile acid biosynthesis, and tryptophan metabolism and then actively promoted the levels of ALP and HLD. Our study indicated that inoculation with active ruminal solids significantly affected the intestinal microbial communities and metabolic characteristics, and these changes can improve the growing health of the newborn lamb. These findings provided an experimental and theoretical basis for the application of ruminal solid-attached microorganisms in the nutritional management of lambs reared for human consumption.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Ovinos , Animales Recién Nacidos , Dieta/veterinaria , Cabras/metabolismo , Oveja Doméstica , Bacterias/genética , Metaboloma , Rumen/metabolismo , Alimentación Animal/análisis
4.
J Anal Methods Chem ; 2023: 9030015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760656

RESUMEN

Cistanche tubulosa (Schenk) R. Wight is a valuable herbal medicine in China. The study aimed to explore the potential mechanisms of C. tubulosa on antioxidant activity using spectrum-effect relationship and network pharmacology and the possibilities of utilizing herbal dregs. In this work, different extracts of C. tubulosa, including herbal materials, water extracts, and herbal residues, were evaluated using high-performance liquid chromatography (HPLC) technology. In addition, the antioxidant activities were estimated in vitro, including 2, 2-diphenyl-1-picrylhydrazyl; superoxide anion; and hydroxyl radical scavenging assays. The spectrum-effect relationships between the HPLC fingerprints and the biological capabilities were analyzed via partial least squares regression, bivariate correlation analysis, and redundancy analysis. Furthermore, network pharmacology was used to predict potential mechanisms of C. tubulosa in the treatment of antioxidant-related diseases. According to the results, eleven common peaks were shared by different extracts. Geniposidic acid, echinacoside, verbascoside, tubuloside A, and isoacteoside were quantified and compared among different forms of C. tubulosa. The spectrum-effect relationship study indicated that peak A 6 might be the most decisive component among the three forms. Based on network pharmacology, there were 159 target genes shared by active components and antioxidant-related diseases. Targets related to antioxidant activity and relevant pathways were discussed. Our results provide a theoretical basis for recycling the herbal residues and the potential mechanisms of C. tubulosa in the treatment of antioxidant-related diseases.

5.
Phytomedicine ; 110: 154633, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36628832

RESUMEN

BACKGROUND: Obesity is a state of accumulating excessive body fat, charactering by a high blood lipid and associating with various metabolic diseases. As a kind of dark tea, many studies revealed that long-term drinking Liupao tea (LT) can reduce weight (Liu et al., 2014). However, the anti-obesity mechanism and active ingredients of LT are not known. METHODS: Liquid chromatography-mass spectrometry (LC-MS) combined with network pharmacology was used to screen the active components and related targets of Liupao tea water extract (LTWE). The key anti-obesity targets and pathways of LTWE were predicted by protein-protein interaction (PPI) networks, and enrichment analyses using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. Then, the active components selected by high-performance liquid chromatography (HPLC) fingerprinting were used together with LTWE in an adipogenic model and insulin resistance (IR) model in vitro. RESULTS: Most of the compounds identified from LTWE were flavonofids, esters, and amides. Key targets such as RAC-alpha serine/threonine-protein kinase, insulin, and tumor necrosis factor (TNF) were involved in the phosphatidylinositol-3-kinase-protein kinase B (PI3K-AKT) signaling pathway, pathways in cancer, and other pathways. Four active components were screened by network pharmacology combined with HPLC fingerprinting. The in vitro experiment of LTWE and its four active components showed that in insulin-resistant 3T3-L1 cells, LTWE, (-)-epigallocatechin gallate (EGCG) and gallic acid (GA) inhibited adipocyte differentiation. Three factors could inhibit the differentiation of 3T3-L1 cells by decreasing gene expression of peroxisome proliferators-activated receptor γ (PPARγ), fatty acid synthase (FAS), CCAAT/enhancer binding proteins-α (C/EBPα) and interleukin-6 (IL-6). Caffeine and ellagic acid (EA) showed opposite results, but their effects on promoting adipose differentiation diminished with increasing concentrations of drug. In dexamethasone-induced insulin-resistant 3T3-L1 cells, the fluorescence intensity of 2-Deoxy-2-[(7-nitro-2,1,3-Benzoxadiazol-4-yl)amino]-d-glucose revealed that LTWE, GA, EGCG, caffeine, and EA significantly promoted glucose consumption. LTWE, GA, and EA improved insulin resistance in adipocytes by upregulating gene expression of insulin receptor substrate-1 (IRS-1), PI3K, AKT, and glucose transporter 4 (GLUT4). CONCLUSION: LC-MS combined with network pharmacology preliminarianized that LTWE acts mainly on the PI3K-AKT signaling pathway. Cell experiments revealed that the anti-obesity effect of LTWE is the result of multi-component action, which inhibits the proliferation and differentiation of preadipocytes by regulating gene expression of adipogenic transcription factors and proinflammatory factors, and improves IR by activating the IRS-1/PI3K/AKT/GLUT4 pathway.


Asunto(s)
Resistencia a la Insulina , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Cafeína , Farmacología en Red , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Transducción de Señal , Insulina/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , , Células 3T3-L1
6.
Chemosphere ; 313: 137613, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36549508

RESUMEN

Nanobubble water (NBW) could improve methane production from anaerobic digestion (AD) of corn straw without secondary contamination. In this study, the effect of carbon dioxide nanobubble water (CO2-NBW) volumes (0%, 25%, 50%, 75%, 100%) on methane production from corn straw was investigated. The results showed that addition of CO2-NBW could improve methane production and promote substrate degradation in AD process. The highest cumulative methane production of 132.16 mL g-1VSadded was obtained in the 100% CO2-NBW added reactor, which was 17% higher than that in the control group. Additionally, the addition of CO2-NBW could mitigate the sharp decrease in pH by acting as a buffer. CO2-NBW could also enhance microorganism activity throughout the AD process. The electron transport system (ETS) activity was increased by 23%, while the ß-glucosidase, dehydrogenase (DHA), and coenzyme F420 activities were increased by 15%, 23%, and 11%, respectively, at optimum addition of CO2-NBW. Meanwhile, addition of CO2-NBW accelerated the production and consumption of reducing sugar and volatile fatty acids (VFAs), promoting the reduction rates of TS (Total solid) and VS (Volatile solid).


Asunto(s)
Reactores Biológicos , Zea mays , Anaerobiosis , Dióxido de Carbono , Agua , Metano , Suplementos Dietéticos , Biocombustibles
7.
Mol Pharm ; 20(2): 886-904, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36563052

RESUMEN

The integration of progressive technologies such as nanomedicine with the use of natural products from traditional medicine (TM) provides a unique opportunity for the longed-for harmonization between traditional and modern medicine. Although several actions have been initiated decades ago, a disparity of reasons including some misunderstandings between each other limits the possibilities of a truly complementation. Herein, we analyze some common challenges between nanomedicine and traditional Chinese medicine (TCM). These challenges, if solved in a consensual way, can give a boost to such harmonization. Nanomedicine is a recently born technology, while TCM has been used by the Chinese people for thousands of years. However, for these disciplines, the regulation and standardization of many of the protocols, especially related to the toxicity and safety, regulatory aspects, and manufacturing procedures, are under discussion. Besides, both TCM and nanomedicine still need to achieve a wider social acceptance. Herein, we first briefly discuss the strengths and weaknesses of TCM. This analysis serves to focus afterward on the aspects where TCM and nanomedicine can mutually help to bridge the existing gaps between TCM and Western modern medicine. As discussed, many of these challenges can be applied to TM in general. Finally, recent successful cases in scientific literature that merge TCM and nanomedicine are reviewed as examples of the benefits of this harmonization.


Asunto(s)
Productos Biológicos , Medicamentos Herbarios Chinos , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/uso terapéutico , Nanomedicina
8.
Front Immunol ; 13: 991656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211409

RESUMEN

Glucose metabolism-related genes play an important role in the development and immunotherapy of many tumours, but their role in thyroid cancer is ambiguous. To investigate the role of glucose metabolism-related genes in the development of papillary thyroid cancer (PTC) and their correlation with the clinical outcome of PTC, we collected transcriptomic data from 501 PTC patients in the Cancer Genome Atlas (TCGA). We performed nonnegative matrix decomposition clustering of 2752 glucose metabolism-related genes from transcriptome data and classified PTC patients into three subgroups (C1 for high activation of glucose metabolism, C2 for low activation of glucose metabolism and C3 for moderate activation of glucose metabolism) based on the activation of different glucose metabolism-related genes in 10 glucose metabolism-related pathways. We found a positive correlation between the activation level of glucose metabolism and the tumour mutation burden (TMB), neoantigen number, mRNA stemness index (mRNAsi), age, and tumour stage in PTC patients. Next, we constructed a prognostic prediction model for PTC using six glucose metabolism-related genes (PGBD5, TPO, IGFBPL1, TMEM171, SOD3, TDRD9) and constructed a nomogram based on the risk score and clinical parameters of PTC patients. Both the prognostic risk prediction model and nomogram had high stability and accuracy for predicting the progression-free interval (PFI) in PTC patients. Patients were then divided into high-risk and low-risk groups by risk score. The high-risk group was sensitive to paclitaxel and anti-PD-1 treatment, and the low-risk group was sensitive to sorafenib treatment. We found that the high-risk group was enriched in inflammatory response pathways and associated with high level of immune cell infiltration. To verify the accuracy of the prognostic prediction model, we knocked down PGBD5 in PTC cells and found that the proliferation ability of PTC cells was significantly reduced. This suggests that PGBD5 may be a relatively important oncogene in PTC. Our study constructed a prognostic prediction model and classification of PTC by glucose metabolism-related genes, which provides a new perspective on the role of glucose metabolism in the development and immune microenvironment of PTC and in guiding chemotherapy, targeted therapy and immune checkpoint blockade therapy of PTC.


Asunto(s)
Glucosa , Neoplasias de la Tiroides , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad , Paclitaxel , ARN Mensajero , Sorafenib , Cáncer Papilar Tiroideo/tratamiento farmacológico , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Microambiente Tumoral
9.
Front Plant Sci ; 13: 908426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909791

RESUMEN

Autotoxicity is a form of intraspecific allelopathy, in which a plant species inhibits the establishment or growth of the same species through the release of toxic chemical compounds into the environment. The phenomenon of autotoxicity in crops is best traced in alfalfa (Medicago sativa). A close relative of alfalfa, M. truncatula, has been developed into an excellent model species for leguminous plants. However, it is not known whether M. truncatula has autotoxicity. In this study, M. truncatula root exudates showed a negative impact on the growth of M. truncatula seedlings, indicating autotoxicity. Detailed analyses with plant extracts from M. truncatula and alfalfa revealed varying degrees of suppression effects in the two species. The extracts negatively affected seed germination potential, germination rate, radicle length, hypocotyl length, synthetic allelopathic effect index, plant height, root growth, fresh weight, dry weight, net photosynthetic rate, transpiration rate, and stomatal conductance in both M. truncatula and alfalfa. The results demonstrated that autotoxicity and allelopathic effects exist in M. truncatula. This opens up a new way to use M. truncatula as a model species to carry out in-depth studies of autotoxicity and allelopathy to elucidate biochemical pathways of allelochemicals and molecular networks controlling biosynthesis of the chemicals.

10.
Chin Med J (Engl) ; 135(12): 1414-1424, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35940879

RESUMEN

BACKGROUND: The risk for chronic kidney disease (CKD) is influenced by genetic predisposition, sex, and lifestyle. Previous research indicates that coffee is a potentially protective factor in CKD. The current study aims to investigate whether sex disparity exists in the coffee-CKD association, and whether genetic risk of CKD or genetic polymorphisms of caffeine metabolism affect this association. METHODS: A total of 359,906 participants from the UK Biobank who were enrolled between 2006 and 2010 were included in this prospective cohort study, which aimed to estimate the hazard ratios for coffee intake and incident CKD using a Cox proportional hazard model. Allele scores of CKD and caffeine metabolism were additionally adjusted for in a subsample with qualified genetic data ( n = 255,343). Analyses stratified by genetic predisposition, comorbidities, and sex hormones were performed. Tests based on Bayesian model averaging were conducted to ascertain the robustness of the results. RESULTS: Coffee was inversely associated with CKD in a dose-dependent manner. The effects of coffee did not differ across different strata of genetic risk for CKD, but were more evident among slower genetically predicted caffeine metabolizers. Significant sex disparity was observed ( P value for interaction = 0.013), in that coffee drinking was only associated with the risk reduction of CKD in females. Subgroup analysis revealed that testosterone and sex hormone-binding globulin (SHBG), but not estradiol, modified the coffee-CKD association. CONCLUSIONS: In addition to the overall inverse coffee-CKD association that was observed in the general population, we could also establish that a sex disparity existed, in that females were more likely to experience the benefit of the association. Testosterone and SHBG may partly account for the sex disparity.


Asunto(s)
Café , Insuficiencia Renal Crónica , Teorema de Bayes , Bancos de Muestras Biológicas , Cafeína/análisis , Femenino , Predisposición Genética a la Enfermedad , Hormonas Esteroides Gonadales , Humanos , Masculino , Estudios Prospectivos , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Factores de Riesgo , Globulina de Unión a Hormona Sexual/análisis , Testosterona , Reino Unido/epidemiología
11.
Am J Clin Nutr ; 116(3): 730-740, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35849013

RESUMEN

BACKGROUND: Habitual coffee consumption has been associated with multiple health benefits. A comprehensive analysis of disease trajectory and comorbidity networks in relation to coffee consumption is, however, currently lacking. OBJECTIVES: We aimed to comprehensively examine the health outcomes associated with habitual coffee consumption, through clarifying its disease trajectory and comorbidity networks. METHODS: Based on the UK Biobank cohort, we included 395,539 individuals with available information on coffee intake collected at recruitment between 2006 and 2010. These individuals were categorized as having low (<1 cup per day), moderate (1-3 cups), and high (≥4 cups) levels of coffee intake, and were followed through 2020 to ascertain 496 medical conditions. Cox regression was used to assess the associations between high-level coffee intake and the risk of medical conditions with a prevalence ≥0.5% in the study population, after adjusting for multiple confounders, using low-level coffee intake as the reference. Disease-trajectory and comorbidity network analyses were then applied to visualize the temporal and nontemporal relationships between the medical conditions that had an inverse association with high-level coffee intake. RESULTS: During a median follow-up of 11.8 years, 31 medical conditions were found to be associated with high-level coffee intake, among which 30 showed an inverse association (HRs ranged from 0.61 to 0.94). The inverse associations were more pronounced for women, compared with men. Disease-trajectory and comorbidity network analyses of these 30 conditions identified 4 major clusters of medical conditions, mainly in the cardiometabolic and gastrointestinal systems, among both men and women; 1 cluster of medical conditions following alcohol-related disorders, primarily among men; as well as a cluster of estrogen-related conditions among women. CONCLUSIONS: Habitual coffee consumption was associated with lower risks of many medical conditions, especially those in the cardiometabolic and gastrointestinal systems and those related to alcohol use and estrogen regulation.


Asunto(s)
Enfermedades Cardiovasculares , Café , Bancos de Muestras Biológicas , Cafeína , Enfermedades Cardiovasculares/epidemiología , Estudios de Cohortes , Comorbilidad , Estrógenos , Femenino , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo , Reino Unido/epidemiología
12.
Biomed Chromatogr ; 36(9): e5429, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35712886

RESUMEN

Cyclocarya paliurus (CP) extracts have been shown to lower sugar and lipid levels in blood, but the material basis is not clear. We analyzed CP aqueous extracts using high-performance liquid chromatography "fingerprinting", checked their pharmacological parameters using virtual screening, and undertook molecular docking and molecular dynamics simulations. Also, the inhibitory effects of CP components upon α-glucosidase in vitro were evaluated. Fingerprinting and virtual screening showed that the aqueous extract of CP contained the active components protocatechuic acid, chlorogenic acid, caffeic acid and rutin, which were safe and had no side effects in vivo. Molecular docking and molecular dynamics simulations showed that chlorogenic acid and rutin might have a potent inhibitory effect on α-glucosidase. An enzyme-activity assay in vitro showed that the half-maximal inhibitory values of chlorogenic acid and rutin were 398.9 and 351.8 µg/ml, respectively. Chlorogenic acid and rutin had an inhibitory effect on α-glucosidase. Cyclocarya paliurus could be developed as a natural α-glucosidase inhibitor.


Asunto(s)
Juglandaceae , alfa-Glucosidasas , Ácido Clorogénico/farmacología , Cromatografía Líquida de Alta Presión , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Juglandaceae/química , Juglandaceae/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Rutina , alfa-Glucosidasas/metabolismo
13.
Microbiol Spectr ; 10(4): e0026022, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35735985

RESUMEN

Thuja sutchuenensis Franch. is an endangered species in southwest China, distributed sporadically in mountainous areas. Soil property and soil fungal community play a crucial role in plant growth and survival. Nevertheless, understanding soil properties and the soil fungal community in the areas where T. sutchuenensis is distributed is extremely limited. Hence, this study collected a total of 180 soil samples from five altitudinal distribution areas (altitudinal gradients) and three vertical depths throughout four horizontal distances from the base of each tree. The results found that altitudinal gradients and vertical depths altered soil properties, including pH, organic matter content, water content, total nitrogen, phosphorus, and potassium, and available nitrogen, phosphorus, and potassium. The fungal alpha diversity indexes (Chao1 and Shannon) and beta diversity were dramatically decreased with elevation. In addition, high altitudes (2,119 m) harbored the highest relative abundance of ectomycorrhizal fungi (27.57%) and the lowest relative abundance of plant-pathogenic fungi (1.81%). Meanwhile, we identified a series of fungal communities, such as Tomentella, Piloderma, Cortinarius, Sebacina, and Boletaceae, that play an essential role in the survival of T. sutchuenensis. The correlation analysis and random forest model identified that water content and total phosphorus showed strong relationships with fungal characteristics and were the primary variables for Zygomycota and Rozellomycota. Collectively, the findings of this integrated analysis provide profound insights into understanding the contrasting responses of T. sutchuenensis soil fungal communities and provide a theoretical basis for T. sutchuenensis habitat restoration and species conservation from multispatial perspectives. IMPORTANCE The present study highlights the importance of fungal communities in an endangered plant, T. sutchuenensis. Comparative analysis of soil samples in nearly all extant T. sutchuenensis populations identified that soil properties, especially soil nutrients, might play critical roles in the survival of T. sutchuenensis. Our findings prove that a series of fungal communities (e.g., Tomentella, Piloderma, and Cortinarius) could be key indicators for T. sutchuenensis survival. In addition, this is the first time that large-scale soil property and fungal community investigations have been carried out in southwest China, offering important values for exploring the distribution pattern of regional soil microorganisms. Collectively, our findings display a holistic picture of soil microbiome and environmental factors associated with T. sutchuenensis.


Asunto(s)
Basidiomycota , Micobioma , Micorrizas , Thuja , Tracheophyta , Hongos , Nitrógeno , Fósforo , Plantas , Potasio , Suelo/química , Microbiología del Suelo , Agua
14.
Front Mol Neurosci ; 15: 822088, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600074

RESUMEN

Cell pyroptosis is one of the main forms of neuronal injury after cerebral ischemia-reperfusion. It is accompanied by an inflammatory reaction and regulated by the caspase gene family. Electroacupuncture (EA) can reduce neuronal injury caused by cerebral ischemia-reperfusion, and we speculated that EA can prevent neuronal pyroptosis after cerebral ischemia-reperfusion by regulating the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/caspase-1 pathway. The cerebral ischemia-reperfusion injury model of C57 and caspase-1 gene knockout (Cas-1 ko) mice was established by Longa's method. EA was conducted at acupoints Chize (LU5), Hegu (LI4), Sanyinjiao (SP6), and Zusanli (ST36) for 1.5 h after cerebral ischemia-reperfusion injury for 20 min, and observation was carried out after 24 h. Neurological deficit scores evaluated the neurological function, cerebral infarction volume was observed by triphenyl tetrazolium chloride (TTC) staining, hematoxylin and eosin (H&E) staining, TUNEL and caspase-1 double-labeled fluorescence staining, and NLRP3 and caspase-1 double-labeled immunofluorescence staining that were used to observe the morphology of neurons in hippocampus, and the protein expression of NLRP3, pro-caspase-1, cleaved caspase-1 p20, pro-interleukin-1ß (IL-1ß), cleaved IL-1ß, and GSDMD was detected by Western blot assay. Results showed that EA could reduce the score of neurological deficit, reduce the volume of cerebral infarction and improve the degree of nerve cell injury, and inhibit NLRP3, pro-caspase-1, cleaved caspase-1 p20, pro-IL-1ß, cleaved IL-1ß, and GSDMD protein expression. In summary, EA plays a neuroprotective role by reducing the pyroptotic neurons that were caspase 1-mediated and inflammatory response after cerebral ischemia-reperfusion.

15.
Biomed Res Int ; 2022: 9304552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402614

RESUMEN

Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a natural herbal drug that has been widely used to treat many diseases. The antitumor effects of G. pentaphyllum were first described in the illustrated catalog of plants. Gypenosides are the major active components of G. pentaphyllum, and they have been widely reported to possess antitumor effects in prostate cancer, gastric cancer, hepatocellular carcinoma, colon cancer, lung cancer, and breast cancer. However, research on the use of gypenoside in the treatment of bladder cancer has not been conducted. In this study, we explored the potential molecular mechanisms of gypenosides in the treatment of bladder cancer using network pharmacology and experimental validation. First, we used a network pharmacology-based method to identify both the effective components of gypenosides and the molecular mechanism underlying their antibladder cancer effects. The results were further confirmed by molecular docking, CCK8 and colony formation assays, and cell cycle and cell apoptosis analyses. Additionally, a mouse xenograft model of bladder cancer was used to investigate the antitumor effect of gypenosides in vivo. We identified 10 bioactive ingredients and 163 gene targets of gypenosides. Network exploration suggested that VEGFA, STAT3, and PI3KCA may be candidate agents for the antibladder cancer effect of gypenosides. In addition, analysis of the Kyoto Encyclopedia of Genes and Genomes pathway revealed that the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway may play a crucial role in the mechanism of action of gypenosides against bladder cancer. Molecular docking revealed that gypenosides combine well with PI3K, AKT, and mTOR. As expected, gypenosides displayed apoptosis-inducing properties in bladder cancer cells by inactivating the PI3K/AKT/mTOR signaling pathway in vitro. Furthermore, gypenosides significantly (P < 0.05) inhibited the growth of bladder cancer cells in vivo. Mechanistically, gypenosides induced the apoptosis of bladder cancer cells via inactivation of the PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Neoplasias de la Vejiga Urinaria , Animales , Apoptosis , Proliferación Celular , Gynostemma , Humanos , Masculino , Mamíferos , Ratones , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
16.
Int J Gen Med ; 14: 9873-9885, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938107

RESUMEN

BACKGROUND: In December 2019, coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2; previously known as 2019-nCoV) emerged in Wuhan, China, and caused many infections and deaths. At present, there are no specific drugs for the etiology and treatment of COVID-19. A combination of traditional Chinese and western medicine is proposed to treat COVID-19, in which Huang Lian Jie Du decoction (HLJDD) is recommended for the treatment of COVID-19 in many provinces in China and has been widely used in the clinic. This study explored the potential targets of HLJDD in the treatment of COVID-19 based on network pharmacology. METHODS: First, the chemical composition and targets of HLJDD and COVID-19-related targets were obtained through the TCMSP, UniProt, GeneCards and OMIM databases. Second, HLJDD target and HLJDD-COVID-19 target networks were constructed via the STRING database and Cytoscape software. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the HLJDD-COVID-19 targets was applied via the DAVID database. RESULTS: Our study identified a total of 67 active ingredients of HLJDD and 204 targets of HLJDD. A total of 502 COVID-19-related targets were obtained, of which 47 were intersecting targets of HLJDD and COVID-19. A total of 179 GO terms and 77 KEGG terms, including the TNF signaling pathway, NF-κB signaling pathway and HIF-1 signaling pathway, were identified. CONCLUSION: The present study explored the potential targets and signaling pathways of HLJDD during the treatment of COVID-19, which may provide a basis for the research and development of drugs for the treatment of COVID-19.

17.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3960-3969, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34472273

RESUMEN

This study aimed to explore the mechanism of Tanreqing Injection in the treatment of acute lung injury(ALI) based on network pharmacology and molecular docking. The active components and action targets of Tanreqing Injection were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), PubChem, and SwissTargetPrediction databases, as well as available literature reports. The ALI-related targets were obtained from the GeneCards database and then mapped with Tanreqing Injection targets. Following the construction of "drug-component-potential target" network with Cytoscape 3.6.1, the potential targets were input into STRING to yield the protein-protein interaction(PPI) network, which was plotted using Cytoscape 3.6.1. Then the screened key targets were subjected to gene ontology(GO) and Kyoto encyclopedia of genes and genomes(KEGG) enrichment analysis based on DAVID database. The top three key targets RAC-alpha serine/threonine-protein kinase(AKT1), albumin(ALB) and interleukin-6(IL6) were docked to the top three key compounds by PyMOL and AutoDock vina. A total of 58 active components of Tanreqing Injection, 597 corresponding targets and 503 common targets shared by Tanreqing Injection and ALI were fi-gured out, with the key targets AKT1, ALB and IL6 involved. GO and KEGG enrichment analysis yielded 1 445 biological processes and 148 signaling pathways, respectively. Molecular docking verified a good binding ability of the top three key targets to the top three key compounds. The analysis based on network pharmacology and molecular docking uncovered that Tanreqing Injection directly or indirectly regulated the pulmonary capillary endothelial cells and alveolar epithelial cells via anti-inflammation, thus alleviating ALI.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética , Células Endoteliales , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular
18.
J Food Biochem ; 45(5): e13707, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760271

RESUMEN

Liupao tea, a drink homologous to medicine and food. It can treat dysentery, relieve heat, remove dampness, and regulate the intestines and stomach. The objective of this study is to explore the material basis and mechanism of Liupao tea intervention in COVID-19 and to provide a new prevention and treatment programme for COVID-19. We used high performance liquid chromatography to analyze the extract of Liupao tea and establish its fingerprint. The main index components of the fingerprint were determined using SARS-COV-2 3-chymotrypsin-like protease (3CLpro ), and an in vitro drug screening model based on fluorescence resonance energy transfer was used to evaluate its inhibitory activity in vitro. The fingerprint results showed that the alcohol extract of Liupao tea contained gallic acid, epigallocatechin gallate (EGCG), caffeine, epicatechin gallate, rutin, and ellagic acid. The molecular docking binding energies of the six index components of SARS-CoV-2 3Clpro were all less than -5.0 kJ/mol and showed strong binding affinity. The results of in vitro activity showed that the IC50 of EGCG was 8.84 µmol/L, which could inhibit SARS-CoV-2 3Clpro to a certain extent. This study unleashed that EGCG has a certain inhibitory effect on SARS-CoV-2 3CLpro , and Liupao tea has a certain significance as a tea drink for the prevention of COVID-19. PRACTICAL APPLICATIONS: The objective of this study was to explore the material basis and mechanism of Liupao tea intervention in COVID-19 and to provide a new prevention and treatment programme for COVID-19. The molecular docking binding energies of the six index components of Liupao tea with SARS-CoV-2 3CLpro were all less than -5.0 kJ/mol, among them, the enzyme activity experiment shows that EGCG has a certain inhibitory effect on SARS-CoV-2 3CLpro , it can be used as a potential SARS-CoV-2 3CLpro inhibitor. We predicted that the understandings gained in the current research may evidence that Liupao tea has a certain significance as a tea drink for the prevention of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cromatografía Líquida de Alta Presión , Humanos , Simulación del Acoplamiento Molecular ,
19.
RSC Adv ; 11(20): 11821-11843, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35423770

RESUMEN

Poria cocos is a traditional Chinese medicine (TCM) that can clear dampness, promote diuresis, and strengthen the spleen and stomach. Poria cocos has been detected in many TCM compounds that are used for COVID-19 intervention. However, the active ingredients and mechanisms associated with the effect of Poria cocos on COVID-19 remain unclear. In this paper, the active ingredients of Poria cocos, along with their potential targets related to COVID-19, were screened using TCMSP, GeneCards, and other databases, by means of network pharmacology. We then investigated the active components, potential targets, and interactions, that are associated with COVID-19 intervention. The primary protease of COVID-19, Mpro, is currently a key target in the design of potential inhibitors. Molecular docking techniques and molecular dynamics simulations demonstrated that the active components of Poria cocos could bind stably to the active site of Mpro with high levels of binding activity. Pachymic acid is based on a triterpene structure and was identified as the main component of Poria cocos; its triterpene active component has low binding energy with Mpro. The pachymic acid of Mpro activity was further characterized and the IC50 was determined to be 18.607 µmol L-1. Our results indicate that pachymic acid exhibits a certain inhibitory effect on the Mpro protease.

20.
J Ethnopharmacol ; 269: 113698, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33338590

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nymphaea hybrida Peck is used as a traditional medicinal herb for treating pain and inflammatory diseases, and known for its ornamental value and as a hot drink. However, the effects of N. hybrida polar fractions on lipopolysaccharide (LPS)-induced in vitro inflammation model and acute inflammation murine models have yet to be evaluated. AIM OF THE STUDY: The aim of this study was to elucidate the anti-inflammatory effects of N. hybrida ethanol extract (NHE) and its polar fractions: petroleum ether (PE), methylene chloride (MC), ethyl acetate (EA), methanol (ME), and water (WA). The underlying molecular mechanisms of active fraction in LPS-stimulated RAW 264.7 murine macrophages were further investigated. MATERIAL AND METHODS: Fractions with potential anti-inflammatory effects were screened using direct nitric oxide (NO) radical scavenging and cyclooxygenase (COX)-2 inhibition assays in vitro. The anti-inflammatory properties of potential fraction were evaluated in LPS-stimulated RAW264.7 cells, xylene-induced ear edema, carrageenan-induced paw edema and xylene-induced Evans blue exudation of acute inflammation murine models. The regulation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were investigated using western blotting and immunofluorescence. RESULTS: Compared to other polar fractions, NHE-EA displayed higher phenol and flavonoid content, and exerted greater activity in direct NO radical scavenging and COX-2 inhibition assay in vitro. NHE-EA markedly decreased the levels of inflammatory mediators, NO and prostaglandin E2 (PGE2), by suppressing the over-expression of inducible nitric oxide synthase (iNOS) and COX-2 in LPS-stimulated RAW264.7 cells. The NHE-EA fraction dose-dependently alleviated over-elevation of LPS-associated intracellular calcium and decreased the abnormal secretion of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6, and interferon-γ (IFN-γ). The combination with NHE-EA effectively attenuated the activation and nuclear translocation of NF-κB p65, and the phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 kinases of MAPK pathways. NHE-EA could significantly ameliorate the degree of swelling of the mice ear and paw, the skin exudation of Evans blue and the excessive secretion of inflammatory cytokines. CONCLUSION: Our results demonstrated that NHE-EA was the most active polar fraction of N. hybrida extracts. It inhibited the LPS-associated inflammatory response by blocking the activation of NF-κB and MAPKs pathways in RAW264.7 cells. It also effectively alleviated the inflammatory response of acute inflammation. These results indicated the role of NHE-EA as adjuvants and their potential role in alternative strategy for the treatment of inflammatory diseases.


Asunto(s)
Acetatos/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Nymphaea/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Enfermedad Aguda , Animales , Antiinflamatorios/uso terapéutico , Calcio/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Carragenina/toxicidad , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/patología , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Subunidad p50 de NF-kappa B/efectos de los fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Otitis/inducido químicamente , Otitis/tratamiento farmacológico , Otitis/patología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Células RAW 264.7 , Xilenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA