Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurospine ; 20(4): 1358-1379, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38171303

RESUMEN

OBJECTIVE: Herein, we investigated whether mesenchymal stem cells (MSCs) transplantation combined with electroacupuncture (EA) treatment could decrease the proportion of proinflammatory microglia/macrophages and neurotoxic A1 reactive astrocytes and inhibit glial scar formation to enhance axonal regeneration after spinal cord injury (SCI). METHODS: Adult rats were divided into 5 groups after complete transection of the spinal cord at the T10 level: a control group, a nonacupoint EA (NA-EA) group, an EA group, an MSC group, and an MSCs+EA group. Immunofluorescence labeling, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blots were performed. RESULTS: The results showed that MSCs+EA treatment reduced the proportion of proinflammatory M1 subtype microglia/macrophages, but increased the differentiation of anti-inflammatory M2 phenotype cells, thereby suppressing the mRNA and protein expression of proinflammatory cytokines (tumor necrosis factor-α and IL-1ß) and increasing the expression of an anti-inflammatory cytokine (interleukin [IL]-10) on days 7 and 14 after SCI. The changes in expression correlated with the attenuated neurotoxic A1 reactive astrocytes and glial scar, which in turn facilitated the axonal regeneration of the injured spinal cord. In vitro, the proinflammatory cytokines increased the level of proliferation of astrocytes and increased the expression levels of C3, glial fibrillary acidic protein, and chondroitin sulfate proteoglycan. These effects were blocked by administering inhibitors of ErbB1 and signal transducer and activator of transcription 3 (STAT3) (AG1478 and AG490) and IL-10. CONCLUSION: These findings showed that MSCs+EA treatment synergistically regulated the microglia/macrophage subpopulation to reduce inflammation, the formation of neurotoxic A1 astrocytes, and glial scars. This was achieved by downregulating the ErbB1-STAT3 signal pathway, thereby providing a favorable microenvironment conducive to axonal regeneration after SCI.

2.
Neurospine ; 19(3): 757-769, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36203300

RESUMEN

OBJECTIVE: This study aimed to identify differentially expressed genes (DEGs) by transcriptome analysis to elucidate a potential mechanism by which governor vessel electroacupuncture (GV-EA) promotes neuronal survival, axonal regeneration, and functional recovery after complete transection spinal cord injury (SCI). METHODS: Sham, control, or GV-EA group adult female Sprague Dawley rats underwent a complete transection SCI protocol. SCI area RNA-seq investigated the DEGs of coding and noncoding RNAs 7 days post-SCI. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were used to classify DEGs functions, to explain a possible molecular mechanism. Immunofluorescence and BBB (Basso, Beattie, and Bresnahan) score were used to verify a GV-EA treatment effect following SCI. RESULTS: GV-EA treatment could regulate the expression of 173 mRNA, 260 lncRNA, and 153 circRNA genes among these DEGs resulted by SCI. GO enrichment analysis showed that the DEGs were most enriched in membrane, actin binding, and regulation of Toll-like receptor signaling pathway. KEGG pathway analysis showed enriched pathways (e.g. , Toll-like receptors, MAPK, Hippo signaling). According to the ceRNA network, miR-144-3p played a regulatory role by interacting with lncRNA and circRNA. GV-EA also promoted the injured spinal cord neuron survival, axonal regeneration, and functional improvement of hind limb locomotion. CONCLUSION: Results of our RNA-seq suggest that post-SCI GV-EA may regulate characteristic changes in transcriptome gene expression, potential critical genes, and signaling pathways, providing clear directions for further investigation into the mechanism of GV-EA in subacute SCI treatment. Moreover, we found that GV-EA promotes neuronal survival, nerve fiber extension, and motor function recovery in subacute SCI.

3.
CNS Neurosci Ther ; 28(5): 635-647, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35174644

RESUMEN

The incidence and disability rate of spinal cord injury (SCI) worldwide are high, imposing a heavy burden on patients. Considerable research efforts have been directed toward identifying new strategies to effectively treat SCI. Governor Vessel electro-acupuncture (GV-EA), used in traditional Chinese medicine, combines acupuncture with modern electrical stimulation. It has been shown to improve the microenvironment of injured spinal cord (SC) by increasing levels of endogenous neurotrophic factors and reducing inflammation, thereby protecting injured neurons and promoting myelination. In addition, axons extending from transplanted stem cell-derived neurons can potentially bridge the two severed ends of tissues in a transected SC to rebuild neuronal circuits and restore motor and sensory functions. However, every single treatment approach to severe SCI has proven unsatisfactory. Combining different treatments-for example, electro-acupuncture (EA) with adult stem cell transplantation-appears to be a more promising strategy. In this review, we have summarized the recent progress over the past two decades by our team especially in the use of GV-EA for the repair of SCI. By this strategy, we have shown that EA can stimulate the nerve endings of the meningeal branch. This would elicit the dorsal root ganglion neurons to secrete excess amounts of calcitonin gene-related peptide centrally in the SC. The neuropeptide then activates the local cells to secrete neurotrophin-3 (NT-3), which mediates the survival and differentiation of donor stem cells overexpressing the NT-3 receptor, at the injury/graft site of the SC. Increased local production of NT-3 facilitates reconstruction of host neural tissue such as nerve fiber regeneration and myelination. All this events in sequence would ultimately strengthen the cortical motor-evoked potentials and restore the motor function of paralyzed limbs. The information presented herein provides a basis for future studies on the clinical application of GV-EA and adult stem cell transplantation for the treatment of SCI.


Asunto(s)
Terapia por Acupuntura , Electroacupuntura , Traumatismos de la Médula Espinal , Animales , Humanos , Regeneración Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley , Médula Espinal , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre
4.
CNS Neurosci Ther ; 27(7): 776-791, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33763978

RESUMEN

AIMS: This study was aimed to investigate whether electroacupuncture (EA) would increase the secretion of neurotrophin-3 (NT-3) from injured spinal cord tissue, and, if so, whether the increased NT-3 would promote the survival, differentiation, and migration of grafted tyrosine kinase C (TrkC)-modified mesenchymal stem cell (MSC)-derived neural network cells. We next sought to determine if the latter would integrate with the host spinal cord neural circuit to improve the neurological function of injured spinal cord. METHODS: After NT-3-modified Schwann cells (SCs) and TrkC-modified MSCs were co-cultured in a gelatin sponge scaffold for 14 days, the MSCs differentiated into neuron-like cells that formed a MSC-derived neural network (MN) implant. On this basis, we combined the MN implantation with EA in a rat model of spinal cord injury (SCI) and performed immunohistochemical staining, neural tracing, electrophysiology, and behavioral testing after 8 weeks. RESULTS: Electroacupuncture application enhanced the production of endogenous NT-3 in damaged spinal cord tissues. The increase in local NT-3 production promoted the survival, migration, and maintenance of the grafted MN, which expressed NT-3 high-affinity TrkC. The combination of MN implantation and EA application improved cortical motor-evoked potential relay and facilitated the locomotor performance of the paralyzed hindlimb compared with those of controls. These results suggest that the MN was better integrated into the host spinal cord neural network after EA treatment compared with control treatment. CONCLUSIONS: Electroacupuncture as an adjuvant therapy for TrkC-modified MSC-derived MN, acted by increasing the local production of NT-3, which accelerated neural network reconstruction and restoration of spinal cord function following SCI.


Asunto(s)
Electroacupuntura/métodos , Células Madre Mesenquimatosas/metabolismo , Red Nerviosa/metabolismo , Regeneración Nerviosa/fisiología , Neurotrofina 3/biosíntesis , Receptor trkC/administración & dosificación , Traumatismos de la Médula Espinal/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Cocultivo , Femenino , Neurotrofina 3/genética , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Células de Schwann/metabolismo , Células de Schwann/trasplante , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia
5.
J Neurotrauma ; 38(6): 734-745, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33121345

RESUMEN

Spinal cord injury (SCI) invariably results in neuronal death and failure of axonal regeneration. This is attributed mainly to the hostile microenvironment and the poor intrinsic regrowth capacity of the injured spinal neurons. We have reported previously that electro-acupuncture on Governor Vessel acupoints (GV-EA) can promote neuronal survival and axonal regeneration of injured spinal cord. However, the underlying mechanism for this has remained uncertain. The present study aimed to explore the neural afferent pathway of GV-EA stimulation and the possible mechanism by which GV-EA can activate the intrinsic growth ability of injured spinal neurons. By cholera toxin B (CTB) retrograde labeling, immunostaining, and enzyme-linked immunosorbent assay (ELISA), we showed here that GV-EA could stimulate the spinal nerve branches of the dorsal root ganglion cells. This would then increase the release of calcitonin gene-related peptide (CGRP) from the afferent terminals in the spinal cord. It is of note that the effect was abrogated after dorsal rhizotomy. Additionally, both in vivo and in vitro results showed that CGRP would act on the post-synaptic spinal cord neurons and triggered the synthesis and secretion of neurotrophin-3 (NT-3) by activating the calcitonin gene-related peptide (CGRP)/ receptor activity-modifying protein (RAMP)1/calcium/calmodulin-dependent protein kinase (αCaMKII) pathway. Remarkably, the observed effect was prevented by the dorsal rhizotomy and the blockers of the CGRP/RAMP1/αCaMKII pathway. More importantly, increase in NT-3 promoted the survival, axonal regrowth, and synaptic maintenance of spinal cord neurons in the injured spinal cord. Therefore, it is concluded that increase in NT-3 production is one of the mechanisms by which GV-EA can activate the intrinsic growth ability of spinal neurons after SCI. The experimental results have reinforced the theoretical basis of GV-EA for its clinical efficacy in patients with SCI.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Electroacupuntura/métodos , Neurotrofina 3/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Nervios Espinales/metabolismo , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/terapia
6.
Stem Cell Reports ; 12(2): 274-289, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30661994

RESUMEN

The hostile environment of an injured spinal cord makes it challenging to achieve higher viability in a grafted tissue-engineered neural network used to reconstruct the spinal cord circuit. Here, we investigate whether cell survival and synaptic transmission within an NT-3 and TRKC gene-overexpressing neural stem cell-derived neural network scaffold (NN) transplanted into transected spinal cord could be promoted by electroacupuncture (EA) through improving the microenvironment. Our results showed that EA facilitated the cell survival, neuronal differentiation, and synapse formation of a transplanted NN. Pseudorabies virus tracing demonstrated that EA strengthened synaptic integration of the transplanted NN with the host neural circuit. The combination therapy also promoted axonal regeneration, spinal conductivity, and functional recovery. The findings highlight EA as a potential and safe supplementary therapeutic strategy to reinforce the survival and synaptogenesis of a transplanted NN as a neuronal relay to bridge the two severed ends of an injured spinal cord.


Asunto(s)
Células-Madre Neurales/fisiología , Neuronas/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiología , Animales , Diferenciación Celular/fisiología , Electroacupuntura/métodos , Femenino , Regeneración Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
7.
Neural Plast ; 2017: 7351238, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28744378

RESUMEN

Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy.


Asunto(s)
Neuronas Motoras/patología , Neuronas Motoras/fisiología , Músculo Esquelético/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Cola (estructura animal)/inervación , Animales , Células del Asta Anterior/metabolismo , Células del Asta Anterior/patología , Células del Asta Anterior/fisiología , Estimulación Eléctrica , Electroacupuntura , Femenino , Neuronas Motoras/metabolismo , Atrofia Muscular , Neurotrofina 3/metabolismo , Ratas Sprague-Dawley , Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia
8.
Neural Regen Res ; 12(12): 2025-2034, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29323042

RESUMEN

In our previous study, we found that the edible alcohol extract of the root of the medicinal plant Rhodiola crenulata (RCE) improved spatial cognition in a rat model of Alzheimer's disease. Another study from our laboratory showed that RCE enhanced neural cell proliferation in the dentate gyrus of the hippocampus and prevented damage to hippocampal neurons in a rat model of chronic stress-induced depression. However, the mechanisms underlying the neuroprotective effects of RCE are unclear. In the present study, we investigated the anti-apoptotic effect of RCE and its neuroprotective mechanism of action in a rat model of Alzheimer's disease established by intracerebroventricular injection of streptozotocin. The rats were pre-administered RCE at doses of 1.5, 3.0 or 6.0 g/kg for 21 days before model establishment. ATP and cytochrome c oxidase levels were significantly decreased in rats with Alzheimer's disease. Furthermore, neuronal injury was obvious in the hippocampus, with the presence of a large number of apoptotic neurons. In comparison, in rats given RCE pretreatment, ATP and cytochrome c oxidase levels were markedly increased, the number of apoptotic neurons was reduced, and mitochondrial injury was mitigated. The 3.0 g/kg dose of RCE had the optimal effect. These findings suggest that pretreatment with RCE prevents mitochondrial dysfunction and protects hippocampal neurons from apoptosis in rats with Alzheimer's disease.

9.
Acupunct Med ; 35(2): 122-132, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27841975

RESUMEN

OBJECTIVES: In spinal cord demyelination, some oligodendrocyte precursor cells (OPCs) remain in the demyelinated region but have a reduced capacity to differentiate into oligodendrocytes. This study investigated whether 'Governor Vessel' (GV) electroacupuncture (EA) would promote the differentiation of endogenous OPCs into oligodendrocytes by activating the retinoid X receptor γ (RXR-γ)-mediated signalling pathway. METHODS: Adult rats were microinjected with ethidium bromide (EB) into the T10 spinal cord to establish a model of spinal cord demyelination. EB-injected rats remained untreated (EB group, n=26) or received EA treatment (EB+EA group, n=26). A control group (n=26) was also included that underwent dural exposure without EB injection. After euthanasia at 7 days (n=5 per group), 15 days (n=8 per group) or 30 days (n=13 per group), protein expression of RXR-γ in the demyelinated spinal cord was evaluated by immunohistochemistry and Western blotting. In addition, OPCs derived from rat embryonic spinal cord were cultured in vitro, and exogenous 9-cis-RA (retinoic acid) and RXR-γ antagonist HX531 were administered to determine whether RA could activate RXR-γ and promote OPC differentiation. RESULTS: EA was found to increase the numbers of both OPCs and oligodendrocytes expressing RXR-γ and RALDH2, and promote remyelination in the remyelinated spinal cord. Exogenous 9-cis-RA enhanced the differentiation of OPCs into mature oligodendrocytes by activating RXR-γ. CONCLUSIONS: The results suggest that EA may activate RXR signalling to promote the differentiation of OPCs into oligodendrocytes in spinal cord demyelination.


Asunto(s)
Diferenciación Celular , Enfermedades Desmielinizantes/terapia , Electroacupuntura , Oligodendroglía/citología , Receptores X Retinoide/metabolismo , Animales , Enfermedades Desmielinizantes/metabolismo , Femenino , Humanos , Oligodendroglía/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Médula Espinal/metabolismo
10.
Neural Regen Res ; 10(1): 128-35, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25788933

RESUMEN

Peripheral nerve injury not only affects the site of the injury, but can also induce neuronal apoptosis at the spinal cord. However, many acupuncture clinicians still focus only on the injury site, selecting acupoints entirely along the injured nerve trunk and neglecting other regions; this may delay onset of treatment efficacy and rehabilitation. Therefore, in the present study, we compared the clinical efficacy of acupuncture at Governor vessel and local meridian acupoints combined (GV/LM group) with acupuncture at local meridian acupoints alone (LM group) in the treatment of patients with peripheral nerve injury. In the GV/LM group (n = 15), in addition to meridian acupoints at the injury site, the following acupoints on the Governor vessel were stimulated: Baihui (GV20), Fengfu (GV16), Dazhui (GV14), and Shenzhu (GV12), selected to treat nerve injury of the upper limb, and Jizhong (GV6), Mingmen (GV4), Yaoyangguan (GV3), and Yaoshu (GV2) to treat nerve injury of the lower limb. In the LM group (n = 15), only meridian acupoints along the injured nerve were selected. Both groups had electroacupuncture treatment for 30 minutes, once a day, 5 times per week, for 6 weeks. Two cases dropped out of the LM group. A good or excellent clinical response was obtained in 80% of the patients in the GV/LM group and 38.5% of the LM group. In a second study, an additional 20 patients underwent acupuncture with the same prescription as the GV/LM group. Electomyographic nerve conduction tests were performed before and after acupuncture to explore the mechanism of action of the treatment. An effective response was observed in 80.0% of the patients, with greater motor nerve conduction velocity and amplitude after treatment, indicating that electroacupuncture on specific Governor vessel acupoints promotes functional motor nerve repair after peripheral nerve injury. In addition, electromyography was performed before, during and after electroacupuncture in one patient with radial nerve injury. After a single session, the patient's motor nerve conduction velocity increased by 23.2%, indicating that electroacupuncture at Governor vessel acupoints has an immediate therapeutic effect on peripheral nerve injury. Our results indicate that Governor vessel and local meridian acupoints used simultaneously promote functional repair after peripheral nerve injury. The mechanism of action may arise from an improvement of the local microenvironment in injured nervous tissue, as well as immediate effects of Governor vessel and local meridian acupoint stimulation to ensure the continuity between the peripheral and central nervous systems.

11.
Sci Rep ; 5: 9133, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25779025

RESUMEN

This study attempted to graft neurotrophin-3 (NT-3) receptor (TrkC) gene modified mesenchymal stem cells (TrkC-MSCs) into the demyelinated spinal cord and to investigate whether electroacupuncture (EA) treatment could promote NT-3 secretion in the demyelinated spinal cord as well as further enhance grafted TrkC-MSCs to differentiate into oligodendrocytes, remyelination and functional recovery. Ethidium bromide (EB) was microinjected into the spinal cord of rats at T10 to establish a demyelinated model. Six groups of animals were prepared for the experiment: the sham, PBS, MSCs, MSCs+EA, TrkC-MSCs and TrkC-MSCs+EA groups. The results showed that TrkC-MSCs graft combined with EA treatment (TrkC-MSCs+EA group) significantly increased the number of OPCs and oligodendrocyte-like cells differentiated from MSCs. Immunoelectron microscopy showed that the oligodendrocyte-like cells differentiated from TrkC-MSCs formed myelin sheaths. Immunofluorescence histochemistry and Western blot analysis indicated that TrkC-MSCs+EA treatment could promote the myelin basic protein (MBP) expression and Kv1.2 arrangement trending towards the normal level. Furthermore, behavioural test and cortical motor evoked potentials detection demonstrated a significant functional recovery in the TrkC-MSCs+EA group. In conclusion, our results suggest that EA treatment can increase NT-3 expression, promote oligodendrocyte-like cell differentiation from TrkC-MSCs, remyelination and functional improvement of demyelinated spinal cord.


Asunto(s)
Enfermedades Desmielinizantes/genética , Electroacupuntura , Expresión Génica , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Receptor trkC/genética , Enfermedades de la Médula Espinal/genética , Adenoviridae/genética , Animales , Diferenciación Celular , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/terapia , Modelos Animales de Enfermedad , Potenciales Evocados Motores , Vectores Genéticos/genética , Células Madre Mesenquimatosas/citología , Vaina de Mielina/metabolismo , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ratas , Receptor trkC/metabolismo , Recuperación de la Función , Enfermedades de la Médula Espinal/metabolismo , Enfermedades de la Médula Espinal/terapia , Transducción Genética , Transgenes
12.
Cell Transplant ; 24(7): 1265-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24856958

RESUMEN

Transplantation of bone marrow mesenchymal stem cells (MSCs) promotes functional recovery in multiple sclerosis (MS) patients and in a murine model of MS. However, there is only a modicum of information on differentiation of grafted MSCs into oligodendrocyte-like cells in MS. The purpose of this study was to transplant neurotrophin-3 (NT-3) and retinoic acid (RA) preinduced MSCs (NR-MSCs) into a demyelinated spinal cord induced by ethidium bromide and to investigate whether EA treatment could promote NT-3 secretion in the demyelinated spinal cord. We also sought to determine whether increased NT-3 could further enhance NR-MSCs overexpressing the tyrosine receptor kinase C (TrkC) to differentiate into more oligodendrocyte-like cells, resulting in increased remyelination and nerve conduction in the spinal cord. Our results showed that NT-3 and RA increased transcription of TrkC mRNA in cultured MSCs. EA increased NT-3 levels and promoted differentiation of oligodendrocyte-like cells from grafted NR-MSCs in the demyelinated spinal cord. There was evidence of myelin formation by grafted NR-MSCs. In addition, NR-MSC transplantation combined with EA treatment (the NR-MSCs + EA group) reduced demyelination and promoted remyelination. Furthermore, the conduction of cortical motor-evoked potentials has improved compared to controls. Together, our data suggest that preinduced MSC transplantation combined with EA treatment not only increased MSC differentiation into oligodendrocyte-like cells forming myelin sheaths, but also promoted remyelination and functional improvement of nerve conduction in the demyelinated spinal cord.


Asunto(s)
Electroacupuntura/métodos , Esclerosis Múltiple/genética , Esclerosis Múltiple/fisiopatología , Neurotrofina 3/química , Traumatismos de la Médula Espinal/terapia , Tretinoina/química , Animales , Diferenciación Celular , Masculino , Ratones , Oligodendroglía , Ratas , Ratas Sprague-Dawley
13.
Stem Cell Rev Rep ; 10(4): 612-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24789671

RESUMEN

In the past decades, mesenchymal stem cells (MSCs) as a promising cell candidate have received the most attention in the treatment of spinal cord injury (SCI). However, due to the low survival rate and low neural differentiation rate, the grafted MSCs do not perform well as one would have expected. In the present study, we tested a combinational therapy to improve on this situation. MSCs were loaded into three-dimensional gelatin sponge (GS) scaffold. After 7 days of induction with neurotrophin-3 (NT-3) and retinoic acid (RA) in vitro, we observed a significant increase in TrkC mRNA transcription by Real-time PCR and this was confirmed by in situ hybridization. The expression of TrkC was also confirmed by Western blot and immunohistochemistry. Differentiation potential of MSCs in vitro into neuron-like cells or oligodendrocyte-like cells was further demonstrated by using immunofluorescence staining. The pre-induced MSCs seeding in GS scaffolds were then grafted into the transected rat spinal cord. One day after grafting, Governor Vessel electro-acupuncture (GV-EA) treatment was applied to rats in the NR-MSCs + EA group. At 30 days after GV-EA treatment, it found that the grafted MSCs have better survival rate and neuron-like cell differentiation compared with those without GV-EA treatment. The sustained TrkC expression in the grafted MSCs as well as increased NT-3 content in the injury/graft site by GV-EA suggests that NT-3/TrkC signaling pathway may be involved in the promoting effect. This study demonstrates that GV-EA and pre-induction with NT-3 and RA together may promote the survival and differentiation of grafted MSCs in GS scaffold in rat SCI.


Asunto(s)
Terapia por Acupuntura , Apoptosis , Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas , Neurotrofina 3/metabolismo , Traumatismos de la Médula Espinal/terapia , Andamios del Tejido , Tretinoina/farmacología , Animales , Antineoplásicos/farmacología , Western Blotting , Médula Ósea/metabolismo , Proliferación Celular , Células Cultivadas , Gelatina/química , Técnicas para Inmunoenzimas , Masculino , Células Madre Mesenquimatosas/citología , Regeneración Nerviosa , Poríferos/química , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Traumatismos de la Médula Espinal/metabolismo
14.
Cell Transplant ; 22(1): 65-86, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23006476

RESUMEN

Our previous study indicated that electroacupuncture (EA) could increase neurotrophin-3 (NT-3) levels in the injured spinal cord, stimulate the differentiation of transplanted bone marrow mesenchymal stem cells (MSCs), and improve functional recovery in the injured spinal cord of rats. However, the number of neuron-like cells derived from the MSCs is limited. It is known that NT-3 promotes the survival and differentiation of neurons by preferentially binding to its receptor TrkC. In this study, we attempted to transplant TrkC gene-modified MSCs (TrkC-MSCs) into the spinal cord with transection to investigate whether EA treatment could promote NT-3 secretion in the injured spinal cord and to determine whether increased NT-3 could further enhance transplanted MSCs overexpressing TrkC to differentiate into neuron-like cells, resulting in increased axonal regeneration and functional improvement in the injured spinal cord. Our results showed that EA increased NT-3 levels; furthermore, it promoted neuron-phenotype differentiation, synaptogenesis, and myelin formation of transplanted TrkC-MSCs. In addition, TrkC-MSC transplantation combined with EA (the TrkC-MSCs + EA group) treatment promoted the growth of the descending BDA-labeled corticospinal tracts (CSTs) and 5-HT-positive axonal regeneration across the lesion site into the caudal cord. In addition, the conduction of cortical motor-evoked potentials (MEPs) and hindlimb locomotor function increased as compared to controls (treated with the LacZ-MSCs, TrkC-MSCs, and LacZ-MSCs + EA groups). In the TrkC-MSCs + EA group, the injured spinal cord also showed upregulated expression of the proneurogenic factors laminin and GAP-43 and downregulated GFAP and chondroitin sulfate proteoglycans (CSPGs), major inhibitors of axonal growth. Together, our data suggest that TrkC-MSC transplantation combined with EA treatment spinal cord injury not only increased MSC survival and differentiation into neuron-like cells but also promoted CST regeneration across injured sites to the caudal cord and functional improvement, perhaps due to increase of NT-3 levels, upregulation of laminin and GAP-43, and downregulation of GFAP and CSPG proteins.


Asunto(s)
Trasplante de Médula Ósea/métodos , Electroacupuntura/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Neuronas/citología , Receptor trkC/biosíntesis , Traumatismos de la Médula Espinal/terapia , Animales , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Células Madre Mesenquimatosas/enzimología , Células Madre Mesenquimatosas/patología , Neuronas/enzimología , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Traumatismos de la Médula Espinal/enzimología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/cirugía
15.
Neurochem Int ; 61(8): 1397-403, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23068989

RESUMEN

Calcitonin gene-related peptide (CGRP) plays a variety of important roles within the nervous system. Increasing CGRP expression could improve the survival of injured neurons and prevent neuronal loss. In this study, we first evaluated in vitro the neuroprotective function of CGRP on mechanically injured cerebellar granule neurons (CGNs) of rats. We then verified this result through exogenous administration of CGRP in a spinal cord transected completely in rats. Finally, we investigated the effect of electro-acupuncture (EA) on CGRP expression following the spinal cord transected completely in rats. We found that EA can improve CGRP expression, and exogenous CGRP may promote the survival of injured neurons, both in vivo and in vitro. Our results suggest that CGRP may be a specific neuropeptide expressed in GV-EA treatment of spinal cord injuries (SCI), and that CGRP may play a neuroprotective role in survival of neurons injured mechanically.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/biosíntesis , Electroacupuntura , Fármacos Neuroprotectores/uso terapéutico , Traumatismos de la Médula Espinal/terapia , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/farmacología , Péptido Relacionado con Gen de Calcitonina/fisiología , Péptido Relacionado con Gen de Calcitonina/uso terapéutico , Células Cultivadas/efectos de los fármacos , Cerebelo/citología , Terapia Combinada , Cordotomía , Implantes de Medicamentos , Femenino , Regulación de la Expresión Génica , Lidocaína/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nocicepción/fisiología , Células del Asta Posterior/metabolismo , Ratas , Ratas Sprague-Dawley , Regeneración , Rizotomía , Médula Espinal/fisiología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Regulación hacia Arriba
16.
PLoS One ; 7(1): e29641, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22235318

RESUMEN

Previously we have demonstrated that a Rhodiola crenulata extract (RCE), containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD) induced by an intracerebroventricular injection of streptozotocin (STZ), and to determine whether this neuroprotective effect is induced by the antioxidative activity of salidroside. Our results showed that pretreatment with the RCE significantly improved the impaired neurogenesis and simultaneously reduced the oxidative stress in the hippocampus of AD rats. In vitro studies revealed that (1) exposure of neural stem cells (NSCs) from the hippocampus to STZ strikingly increased intracellular reactive oxygen species (ROS) levels, induced cell death and perturbed cell proliferation and differentiation, (2) hydrogen peroxide induced similar cellular activities as STZ, (3) pre-incubation of STZ-treated NSCs with catalase, an antioxidant, suppressed all these cellular activities induced by STZ, and (4) likewise, pre-incubation of STZ-treated NSCs with salidroside, also an antioxidant, suppressed all these activities as catalase: reduction of ROS levels and NSC death with simultaneous increases in proliferation and differentiation. Our findings indicated that the RCE improved the impaired hippocampal neurogenesis in the rat model of AD through protecting NSCs by its main ingredient salidroside which scavenged intracellular ROS.


Asunto(s)
Glucósidos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/lesiones , Neurogénesis/efectos de los fármacos , Fenoles/farmacología , Extractos Vegetales/farmacología , Rhodiola/química , Estreptozocina , Animales , Catalasa/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/farmacología , Hipocampo/metabolismo , Hipocampo/patología , Inyecciones , Masculino , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
17.
Neurosci Res ; 70(3): 294-304, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21470565

RESUMEN

Oligodendrocyte precursor cells (OPCs) are one of the potential treating tools for multiple sclerosis (MS). Therefore, the cell number and differentiation of OPCs in a demyelinated spinal cord are crucial for improvement of reparative process. In the present study, we investigated whether "Governor Vessel (GV)" electro-acupuncture (EA) could efficiently promote increase in cell number and differentiation of OPCs into oligodendrocytes, remyelination and functional recovery in the demyelinated spinal cord. The spinal cord of adult Sprague-Dawley rats was microinjected with ethidium bromide (EB) at T10, to establish a demyelinated model. Six groups of animals were performed for the experiment. After 15 days EA treatment, neurotrophin-3 (NT-3) level and number of NG2-positive OPCs were significantly increased. Compared with the sham group, more NG2-positive OPCs were distributed between neurofilament (NF)-positive nerve fibres or closely associated with them in the lesion site and nearby tissue. In rats given longer EA treatment for 30 days, the number of adenomatous polyposis coli (APC)-positive oligodendrocytes was increased. Concomitantly, the number of newly formed myelins was increased. This was coupled by increase in endogenous oligodendrocyte involved in myelin formation. Furthermore, behavioural test and spinal cord evoked potential detection demonstrated a significant functional recovery in the EA+EB day 30 group. Our results suggest EA treatment can promote NT-3 expression, increase the cell number and differentiation of endogenous OPCs, and remyelination in the demyelinated spinal cord as well as the functional improvement of demyelinated spinal cord.


Asunto(s)
Enfermedades Desmielinizantes/terapia , Electroacupuntura/métodos , Etidio/toxicidad , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/terapia , Animales , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Masculino , Neurotoxinas/toxicidad , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/inducido químicamente , Traumatismos de la Médula Espinal/fisiopatología
18.
Cell Transplant ; 20(4): 475-91, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20887664

RESUMEN

Our previous study has reported that electroacupuncture (EA) promotes survival, differentiation of bone marrow mesenchymal stem cells (MSCs), and functional improvement in spinal cord-transected rats. In this study, we further investigated the structural bases of this functional improvement and the potential mechanisms of axonal regeneration in injured spinal cord after MSCs and EA treatment. Five experimental groups, 1) sham control (Sham-control); 2) operated control (Op-control); 3) electroacupuncture treatment (EA); 4) MSCs transplantation (MSCs), and 5) MSCs transplantation combined with electroacupuncture (MSCs + EA), were designed for this study. Western blots and immunohistochemical staining were used to assess the fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs) proteins expression. Basso, Beattie, Bresnahan (BBB) locomotion test, cortical motor evoked potentials (MEPs), and anterograde and retrograde tracing were utilized to assess cortical-spinal neuronal projection regeneration and functional recovery. In the MSCs + EA group, increased labeling descending corticospinal tract (CST) projections into the lesion site showed significantly improved BBB scales and enhanced motor evoked potentials after 10 weeks of MSCs transplant and EA treatment. The structural and functional recovery after MSCs + EA treatment may be due to downregulated GFAP and CSPGs protein expression, which prevented axonal degeneration as well as improved axonal regeneration.


Asunto(s)
Axones/fisiología , Electroacupuntura/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/terapia , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/biosíntesis , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Proteína Ácida Fibrilar de la Glía/biosíntesis , Inmunohistoquímica , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/metabolismo , Análisis de Supervivencia
19.
Exp Toxicol Pathol ; 63(1-2): 151-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20005688

RESUMEN

In order to improve the structure and function of acute spinal cord injury, the present study investigated the effect of electro-acupuncture (EA) on the differentiation of mesenchymal stem cells (MSCs) and the regeneration of nerve fibers in transected spinal cord of rats. The differentiation of MSCs into neuron-like cells and neuroglial cells and regeneraton of 5-hydroxytrptamine (HT) nerve fibers in the injured site of spinal cord were assessed after treatment with EA, MSCs transplantation, and EA plus MSCs transplantation. Compared with the control and MSCs groups, the content of endogenous neurotrophin-3 (NT-3) in the injured site and nearby tissues was increased in EA and EA+MSCs group. The differentiation of MSCs into neuronal-like cells and oligodendrocyte-like cells and number of 5-HT positive nerve fibers in the injured site were enhanced in the EA+MSCs group. Basso, Beattie, Bresnahan score of the paralyzed hindlimbs was highest in the EA+MSCs group. The present study demonstrates that electro-acupuncture can promote the differentiation of MSCs and regeneration of nerve fibers in injured spinal cord through induction of endogenous NT-3, and that combination of EA and MSCs transplantation can improve partial function of paralyzed hindlimbs.


Asunto(s)
Diferenciación Celular , Electroacupuntura/métodos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Fibras Nerviosas/fisiología , Regeneración Nerviosa , Recuperación de la Función , Traumatismos de la Médula Espinal/cirugía , Animales , Conducta Animal/efectos de los fármacos , Terapia Combinada , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Masculino , Actividad Motora/fisiología , Neurotrofina 3/metabolismo , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia
20.
Neurosci Res ; 67(4): 307-16, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20438770

RESUMEN

Spinal cord injury (SCI) is a serious condition often affecting young and healthy individuals around the world. Electro-acupuncture (EA) has been proven to contribute towards neurologic and functional recoveries in SCI, but the underlying mechanism remains largely unknown especially regarding neural specific proteins involved in the development of EA. The protein expression profile of spinal cord in both SCI and EA treatment models was analyzed by using two-dimensional electrophoresis-based proteomics. Using a MALDI-TOF/TOF MS and subsequent protein database searching, we identified changes in 15 proteins in the spinal cord following Governor Vessel (GV) EA treatment on SCI. These proteins are involved in inflammation, cell adhesion and migration, signal transduction and apoptosis processes. We selected 2 proteins (ANXA5 and CRMP2) beneficial to neuronal survival and axonal regeneration, and further identified these protein changes using Western blot analysis. Subsequently, Nissl staining and immunofluorescence double labeling approaches were used to explore possible role of the two neural specific proteins in the process of GV-EA treatment on SCI. Our results suggest that ANXA5 and CRMP2 may be neural specific proteins in the process of GV-EA treatment on SCI. This work might contribute to the better understanding of the mechanism involved in EA treatment on SCI at protein levels and provide a new therapeutic strategy for SCI.


Asunto(s)
Electroacupuntura/métodos , Proteínas del Tejido Nervioso/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Médula Espinal/metabolismo , Animales , Anexina A5/biosíntesis , Anexina A5/química , Anexina A5/fisiología , Axotomía , Modelos Animales de Enfermedad , Femenino , Proteínas de Choque Térmico HSP27/biosíntesis , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/fisiología , Péptidos y Proteínas de Señalización Intercelular , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Proteínas de Unión a Fosfatidiletanolamina/biosíntesis , Proteínas de Unión a Fosfatidiletanolamina/química , Proteínas de Unión a Fosfatidiletanolamina/fisiología , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Médula Espinal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA