Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Revista
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FEBS J ; 289(1): 246-261, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34293244

RESUMEN

Plant PIP aquaporins play a central role in controlling plant water status. The current structural model for PIP pH-gating states that the main pH sensor is located in loopD and that all the mobile cytosolic elements participate in a complex interaction network that ensures the closed structure. However, the precise participation of the last part of the C-terminal domain (CT) in PIP pH gating remains unknown. This last part has not been resolved in PIP crystal structures and is a key difference between PIP1 and PIP2 paralogues. Here, by a combined experimental and computational approach, we provide data about the role of CT in pH gating of Beta vulgaris PIP. We demonstrate that the length of CT and the positive charge located among its last residues modulate the pH at which the open/closed transition occurs. We also postulate a molecular-based mechanism for the differential pH sensing in PIP homo- or heterotetramers by performing atomistic molecular dynamics simulations (MDS) on complete models of PIP tetramers. Our findings show that the last part of CT can affect the environment of loopD pH sensors in the closed state. Results presented herein contribute to the understanding of how the characteristics of CT in PIP channels play a crucial role in determining the pH at which water transport through these channels is blocked, highlighting the relevance of the differentially conserved very last residues in PIP1 and PIP2 paralogues.


Asunto(s)
Acuaporinas/genética , Transporte Biológico/genética , Proteínas de la Membrana/genética , Proteínas de Plantas/genética , Acuaporinas/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Citosol/metabolismo , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Multimerización de Proteína , Agua/metabolismo
2.
FEBS J ; 286(17): 3473-3487, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31077546

RESUMEN

The control of water permeability in plant PIP2 aquaporins has become a paradigmatic case study of the capping mechanism for pore closure in water channels. From structural data, it has been postulated that the gating process in PIP2 involves a conformational rearrangement in cytosolic loopD that generates an obstruction to the transport of water molecules inside the aquaporin pore. BvPIP2;2 is a PIP2 aquaporin from Beta vulgaris whose pH response has been thoroughly characterized. In this work, we study the participation of Leu206 in BvPIP2;2 gating triggered by cytosolic acidification and show that this residue acts as a plug that blocks water transport. Based on data obtained from in silico and in vitro studies, we demonstrate that Leu206, one of the residues lining the pore, is responsible for ~ 60% of water blockage. Cell osmotic swelling experiments and atomistic molecular dynamics simulations indicate that the replacement of Leu206 by an Ala residue maintains high water permeability under conditions where the pore is expected to be closed. The present work demonstrates that Leu206, located at the cytoplasmic entry of the channel, constitutes a crucial pH-sensitive steric gate regulating water transport in PIP aquaporins.


Asunto(s)
Acuaporinas/química , Activación del Canal Iónico , Proteínas de Plantas/química , Sustitución de Aminoácidos , Acuaporinas/genética , Acuaporinas/metabolismo , Beta vulgaris , Simulación de Dinámica Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA