Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111092

RESUMEN

Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disorders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease, hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α-amanitin. G. lucidum protects the liver through a broad range of mechanisms that include the modulation of liver Phase I and II enzymes, the suppression of ß-glucuronidase, antifibrotic and antiviral actions, the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify an encouraging approach for the management of various chronic hepatopathies, and its potential mechanisms make it a distinctive agent when used alone or with other drugs and applied as a functional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes the hepatoprotective properties of G. lucidum with its various mechanisms of action on different liver ailments. Biologically active substances derived from G. lucidum are still being studied for their potential benefits in treating different liver ailments.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Reishi , Triterpenos , Humanos , Triterpenos/farmacología , Polisacáridos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
2.
Nepal Med Coll J ; 9(3): 182-5, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18092437

RESUMEN

Bacterial plasmids encode resistance systems for toxic metal ions including Hg2+ functioning by energy-dependent efflux of toxic ions. The inducible mercury resistance (mer) operon encodes both a mercuric ion uptake and a detoxification enzymes. In Gram-negative bacteria especially in E. coli, a periplasmic protein, MerP, an inner- membrane transport protein, MerT, and a cytoplasmic enzyme, mercuric reductase (the MerA protein), are responsible for the transport of mercuric ions into cell and their reduction to elemental mercury, Hg0. Phytoremediation involves the use of plants to extract, detoxify and/or sequester environmental pollutants from soil and water. Transgenic plants cleave mercury ions from methyl-mercury complexes; reduce mercury ions to the metallic form; take up metallic mercury through their roots; and evolve less toxic elemental mercury. PCR were performed to detect 1695 bp of mercuric reductase gene (merA), which is mainly responsible for the conversion of mercuric (Hg+2) and mercurous (Hg+1) ions into non-toxic elemental mercury. PCR products of putative merA genes from environmental E. coli strains were purified and cloned into a plant expression vector pRT100. The construct will be transformed in calli of Nicotiana plants.


Asunto(s)
Escherichia coli/genética , Compuestos de Mercurio/análisis , Oxidorreductasas/genética , Plásmidos de Bacteriocinas/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Amplificación de Genes , Humanos , Fitoterapia , Proyectos Piloto , Microbiología del Suelo , Nicotiana/genética , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA