Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(46): 53827-53834, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944101

RESUMEN

Antibacterial nanoagents with well-controlled structures are greatly desired to address the challenges of bacterial infections. In this study, a featherlike tellurium-selenium heterostructural nanoadjuvant (TeSe HNDs) was created. TeSe HNDs produced 1O2 and had high photothermal conversion efficiency when stimulated with 808 nm near-infrared (NIR) light. To create a synergistic treatment system (TeSe-ICG) with better photothermal and photodynamic capabilities, the photosensitizer indocyanine green (ICG) was then added. With a bactericidal rate of more than 99%, the NIR-mediated TeSe-ICG demonstrated an efficient bactericidal action against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). In addition, TeSe-ICG was also effective in treating wound infections and could effectively promote wound healing without obvious toxic side effects. In conclusion, TeSe-ICG is expected to be a good candidate for the treatment of bacterial infections.


Asunto(s)
Fotoquimioterapia , Selenio , Infecciones Estafilocócicas , Humanos , Selenio/farmacología , Telurio/farmacología , Fototerapia , Verde de Indocianina/química , Escherichia coli , Antibacterianos/farmacología
2.
Environ Toxicol ; 38(6): 1292-1304, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36880193

RESUMEN

Swietenia macrophylla King, belongs to the Meliaceae family, is a valuable medicinal plant and its fruits have been processed commercially to a variety of health foods. The seeds have long been known for their ethnomedicinal significance against these diseases. Swietenine (Swi) was isolated from S. macrophylla and could ameliorate inflammation and oxidative stress. In this study, HepG2 cells induced by H2 O2 were used to construct oxidative stress model in vitro. The aim of this study was to investigate the protective effect of Swi on H2 O2 induced oxidative injury in HepG2 cells and its molecular mechanism, and to explore the effect of Swi on liver injury in db/db mice and its possible mechanism. The results showed that Swi significantly inhibited HepG2 cells viability and reduced oxidative damage in a dose-dependent manner as evidenced by a range of biochemical analysis and immunoblotting study. Moreover, it induced the protein and mRNA expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of AKT in HepG2 cells. LY294002, a PI3K/AKT inhibitor, significantly suppressed the Nrf2 nuclear translocation and HO-1 expression in H2 O2 induced HepG2 cells treated with Swi. In addition, RNA interference with Nrf2 significantly reduced the expression level of Nrf2 and HO-1 in the nucleus. Swi has a significant protective effect on cell damage in H2 O2 induced HepG2 cells by increasing the antioxidant capacity which is achieved through the AKT/Nrf2/HO-1 pathway. Additionally, in vivo, Swi could protect the liver of type 2 diabetic mice by improving lipid deposition in liver tissue and inhibiting oxidative stress. These findings indicated that Swi can be a promising dietary agent to improve type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Apoptosis , Estrés Oxidativo , Transducción de Señal , Hígado/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA