Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Plant ; 13(11): 1644-1653, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32810599

RESUMEN

The outer wall of pollen and spores, namely the exine, is composed of sporopollenin, which is highly resistant to chemical reagents and enzymes. In this study, we demonstrated that phenylpropanoid pathway derivatives are essential components of sporopollenin in seed plants. Spectral analyses showed that the autofluorescence of Lilium and Arabidopsis sporopollenin is similar to that of lignin. Thioacidolysis and NMR analyses of pollen from Lilium and Cryptomeria further revealed that the sporopollenin of seed plants contains phenylpropanoid derivatives, including p-hydroxybenzoate (p-BA), p-coumarate (p-CA), ferulate (FA), and lignin guaiacyl (G) units. The phenylpropanoid pathway is expressed in the tapetum in Arabidopsis, consistent with the fact that the sporopollenin precursor originates from the tapetum. Further germination and comet assays showed that this pathway plays an important role in protection of pollen against UV radiation. In the pteridophyte plant species Ophioglossum vulgatum and Lycopodium clavata, phenylpropanoid derivatives including p-BA and p-CA were also detected, but G units were not. Taken together, our results indicate that phenylpropanoid derivatives are essential for sporopollenin synthesis in vascular plants. In addition, sporopollenin autofluorescence spectra of bryophytes, such as Physcomitrella and Haplocladium, exhibit distinct characteristics compared with those of vascular plants, indicating the diversity of sporopollenin among land plants.


Asunto(s)
Biopolímeros/química , Carotenoides/química , Fenilpropionatos/química , Plantas/química , Polen/química , Arabidopsis , Lilium , Polen/efectos de la radiación , Protectores contra Radiación
2.
Plant Sci ; 292: 110394, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32005399

RESUMEN

Plant cytoplasmic ribosomal proteins not only participate in protein synthesis, but also have specific roles in developmental regulation. However, the high heterogeneity of plant ribosome makes our understanding of these proteins very limited. Here we reported that RPL14B, a component of the ribosome large subunit, is critical for fertilization in Arabidopsis. RPL14B is existed in a majority of organs and tissues. No homozygous rpl14b mutant is available, indicating that RPL14B is irreplaceable for sexual reproduction. Smaller-sized rpl14b pollens could germinate normally, but pollen tube competitiveness is grievously weakened. Beside, cell fate specification is impaired in female gametophytes from heterozygous rpl14b/RPL14B ovules, resulting in defect of micropylar pollen tube attraction. However, this defect could be restored by restricted expression of RPL14B in synergid cells. Successful fertilization requires normal pollen tube growth and precise pollen tube guidance. Thus our results show a novel role of RPL14B in fertilization and shed new light on regulatory mechanism of pollen tube growth and precise pollen tube guidance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Fertilización , Tubo Polínico/fisiología , Polen/anatomía & histología , Proteínas Ribosómicas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoplasma , Polen/genética , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Proteínas Ribosómicas/deficiencia , Proteínas Ribosómicas/metabolismo
3.
Plant J ; 82(5): 758-71, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25846941

RESUMEN

Inositol polyphosphate kinase (IPK2) is a key component of inositol polyphosphate signaling. There are two highly homologous inositol polyphosphate kinases (AtIPK2α and AtIPK2ß) in Arabidopsis. Previous studies that overexpressed or reduced the expression of AtIPK2α and AtIPK2ß revealed their roles in auxiliary shoot branching, abiotic stress responses and root growth. Here, we report that AtIPK2α and AtIPK2ß act redundantly during pollen development, pollen tube guidance and embryogenesis. Single knock-out mutants of atipk2α and atipk2ß were indistinguishable from the wild type, whereas the atipk2α atipk2ß double mutant could not be obtained. Detailed genetic and cytological investigations showed that the mutation of AtIPK2α and AtIPK2ß resulted in severely reduced transmission of male gametophyte as a result of abnormal pollen development and defective pollen tube guidance. In addition, the early embryo development of the atipk2α atipk2ß double mutant was also aborted. Expressing either catalytically inactive or substrate specificity-altered variants of AtIPK2ß could not rescue the male gametophyte and embryogenesis defects of the atipk2α atipk2ß double mutant, implying that the kinase activity of AtIPK2 is required for pollen development, pollen tube guidance and embryogenesis. Taken together, our results provide genetic evidence for the requirement of inositol polyphosphate signaling in plant sexual reproduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Tubo Polínico/metabolismo , Polen/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plantas Modificadas Genéticamente , Polen/genética , Polen/metabolismo , Tubo Polínico/fisiología , Semillas/genética , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA